Sorting restricted ranges of numbers

• If the range is restricted, we can sort using more than comparisons and swaps.
• Assume each of the n input elements is an integer in the range $1 \ldots k$.
Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Idea For each $A[i]$ compute the number of elements less than or equal to $A[i]$ use that to compute position.
Sorting restricted ranges of numbers

• If the range is restricted, we can sort using more than comparisons and swaps.
• Assume each of the \(n \) input elements is an integer in the range \(1 \ldots k \).

Idea For each \(A[i] \) compute the number of elements less than or equal to \(A[i] \), and use that to compute position.

• Array \(A[1 \ldots n] \) – holds input
• Array \(C[1 \ldots k] \) – \(C[j] \) holds number of elements of \(A \) less than or equal to \(j \)

Example:

<table>
<thead>
<tr>
<th>index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sorting restricted ranges of numbers

• If the range is restricted, we can sort using more than comparisons and swaps.
• Assume each of the \(n \) input elements is an integer in the range \(1 \ldots k \).

Idea For each \(A[i] \) compute the number of elements less than or equal to \(A[i] \) and use that to compute position.

• Array \(A[1 \ldots n] \) – holds input
• Array \(C[1 \ldots k] \) – \(C[j] \) holds number of elements of A less than or equal to \(j \)

Example:

<table>
<thead>
<tr>
<th>index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Questions

• How do we compute \(C \)?
Counting Sort

\[Counting - Sort(A, B, k) \]

1. for \(i \leftarrow 0 \) to \(k \)
2. \hspace{1em} do \(C[i] \leftarrow 0 \)
3. for \(j \leftarrow 1 \) to \(\text{length}[A] \)
4. \hspace{1em} do \(C[A[j]] \leftarrow C[A[j]] + 1 \)
5. \hspace{1em} \(\triangleright \) \(C[i] \) now contains the number of elements equal to \(i \).
6. for \(i \leftarrow 1 \) to \(k \)
7. \hspace{1em} do \(C[i] \leftarrow C[i] + C[i - 1] \)
8. \hspace{1em} \(\triangleright \) \(C[i] \) now contains the number of elements less than or equal to \(i \).
9. for \(j \leftarrow \text{length}[A] \) downto \(1 \)
11. \hspace{1em} \(C[A[j]] \leftarrow C[A[j]] - 1 \)
Analysis

- Running Time \(O(n + k) \)
- No Comparisons
- Doesn’t work on all data
- Good when \(k \) is small
- When \(k = O(n) \) we have run-time \(O(n + k) = O(n) \)
- Examples?
Stable Sorting

- We want to sort $x_1, x_2, ..., x_n$
- If $x_i > x_j$ then put x_i after x_j
Stable Sorting

• We want to sort \(x_1, x_2, \ldots, x_n \)

• If \(x_i > x_j \) then put \(x_i \) after \(x_j \)

• But what if \(x_i = x_j \)
Stable Sorting

- We want to sort $x_1, x_2, ..., x_n$
- If $x_i > x_j$ then put x_i after x_j
- But what if $x_i = x_j$

Stable Sorting: if $i < j$ and $x_i = x_j$ then put x_i before x_j
Stable Sorting

• We want to sort $x_1, x_2, ..., x_n$
• If $x_i > x_j$ then put x_j after x_i
• But what if $x_i = x_j$

Stable Sorting: if $i < j$ and $x_i = x_j$ then put x_i before x_j

Question: Is counting sort stable?
Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?
Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?

- \(n = 150 \)
- \(k = 27^2 > 700 \)
- Running time is \(150 + 700 = 850 \)
Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?

- $n = 150$
- $k = 27^2 > 700$
- Running time is $150 + 700 = 850$

Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.
Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?

- $n = 150$
- $k = 27^2 > 700$
- Running time is $150 + 700 = 850$

Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.

Analysis

- Sorting a single letter: $150 + 27 < 200$
- Total running time: $2(150 + 27) < 400$
Radix Sort

Radix – Sort (A, d)
1 for $i \leftarrow 1$ to d
2 do use a stable sort to sort array A on digit i

Example

<table>
<thead>
<tr>
<th>379</th>
<th>STABLE SORT</th>
<th>912</th>
<th>STABLE SORT</th>
<th>802</th>
<th>STABLE SORT</th>
<th>258</th>
</tr>
</thead>
<tbody>
<tr>
<td>912</td>
<td>\Rightarrow</td>
<td>802</td>
<td>\Rightarrow</td>
<td>803</td>
<td>\Rightarrow</td>
<td>259</td>
</tr>
<tr>
<td>258</td>
<td>823</td>
<td>804</td>
<td>269</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>803</td>
<td>912</td>
<td>279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>823</td>
<td>804</td>
<td>823</td>
<td>379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>258</td>
<td>258</td>
<td>802</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>379</td>
<td>259</td>
<td>803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>269</td>
<td>269</td>
<td>804</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>359</td>
<td>379</td>
<td>823</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>279</td>
<td>279</td>
<td>912</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radix Sort Correctness

Radix – Sort(A, d)

1. for *i* ← 1 to *d*
2. do use a stable sort to sort array *A* on digit *i*

Loop Invariant: After the *i*th iteration of the loop, the elements are sorted by their last *i* digits.
Radix Sort Correctness

Radix – Sort\((A,d) \)

1. for \(i \leftarrow 1 \) to \(d \)
2. do use a stable sort to sort array \(A \) on digit \(i \)

Loop Invariant: After the \(i \)th iteration of the loop, the elements are sorted by their last \(i \) digits.

Inductive Step:

- Assume the invariant holds after \(i-1 \) iterations
- Need to prove that it holds after \(i \) iterations
Radix Sort Analysis

- n elements
Radix Sort Analysis

• n elements
• All elements have d digits
 – Initials: $d = 2$
 – SSN: $d = 9$
 – Dictionary Words: $d = 30$
Radix Sort Analysis

• \(n \) elements
• All elements have \(d \) digits
 – Initials: \(d = 2 \)
 – SSN: \(d = 9 \)
 – Dictionary Words: \(d = 30 \)
• Digits are in base \(b \)
 – Numbers: \(b = 10 \)
 – Words: \(b = 27 \)
 – UNI (letter/number): \(b = 37 \)
Radix Sort Analysis

- n elements
- All elements have d digits
 - Initials: $d = 2$
 - SSN: $d = 9$
 - Dictionary Words: $d = 30$
- Digits are in base b
 - Numbers: $b = 10$
 - Words: $b = 27$
 - UNI (letter/number): $b = 37$

Radix Sort Running Time: $O(d(n + b))$
Radix Sort Analysis

- n elements
- All elements have d digits
 - Initials: $d = 2$
 - SSN: $d = 9$
 - Dictionary Words: $d = 30$
- Digits are in base b
 - Numbers: $b = 10$
 - Words: $b = 27$
 - UNI (letter/number): $b = 37$

Radix Sort Running Time: $O(d(n + b))$

Counting Sort Running Time: $O(n + k) = O(n + b^d)$
Example

Setup : Sort everyone in columbia by UNI. Say $n = 40,000$
Example

Setup: Sort everyone in columbia by UNI. Say \(n = 40,000 \)

Radix Sort:

- \(d = 7 \)
- \(b = 37 \)
- Running Time: \(d(n + b) = 7(40,000 + 37) \approx 280,000 \)
Example

Setup: Sort everyone in columbia by UNI. Say \(n = 40,000 \)

Radix Sort:

- \(d = 7 \)
- \(b = 37 \)
- Running Time: \(d(n + b) = 7(40,000 + 37) \sim 280,000 \)

Counting Sort:

- UNI = 7-digit number in base 37.
- \(k = b^d = 37^7 \sim 10^{11} \)
- Running Time: \(n + k = 40,000 + 37^7 \sim 10^{11} \)
Example

Setup: Sort everyone in columbia by UNI. Say $n = 40,000$

Radix Sort:
- $d = 7$
- $b = 37$
- Running Time: $d(n + b) = 7(40,000 + 37) \sim 280,000$

Counting Sort:
- UNI = 7-digit number in base 37.
- $k = b^d = 37^7 \sim 10^{11}$
- Running Time: $n + k = 40,000 + 37^7 \sim 10^{11}$

Merge Sort
- Running Time: $n\log(n) = 40,000 \cdot \log(40,000) \sim 600,000$