Disjoint Sets

• Set of items - X.
• Maintain disjoint sets S_1, \ldots, S_k; i.e. $S_i \cap S_j = \emptyset \ \forall i \neq j$
• Operations:
 – MakeSet(x) - create a one-element set with x
 – Find-Set(x) - return the “name” of the set containing x
 – Union(x, y) - merge the set containing x and the set containing y into one set.

Representation

• Represent set as a rooted tree, with name being root
• Time per operation is proportional to height of tree.
• Two good heuristics
 – Union by Rank - make shallow tree a child of root of big tree
 – Path Compression - every time you touch a node, make it a child of root
• Union by Rank gives $\log V$ time per operation
• Union by Rank and path compression give better performance.
Disjoint Set Code

Make-Set(x)
1 \(p[x] \leftarrow x \)
2 \(\text{rank}[x] \leftarrow 0 \)

Union(x, y)
1 \(\text{Link(Find-Set}(x), \text{Find-Set}(y)) \)

Link(x, y)
1 if \(\text{rank}[x] > \text{rank}[y] \)
2 then \(p[y] \leftarrow x \)
3 else \(p[x] \leftarrow y \)
4 if \(\text{rank}[x] = \text{rank}[y] \)
5 then \(\text{rank}[y] \leftarrow \text{rank}[y] + 1 \)

Find-Set(x)
1 if \(x \neq p[x] \)
2 then \(p[x] \leftarrow \text{Find-Set}(p[x]) \)
3 return \(p[x] \)
Ackerman’s Function

\[
A_k(j) = \begin{cases}
 j + 1 & \text{if } k = 0 \\
 A_{k-1}^{(j+1)}(j) & \text{if } k \geq 1
\end{cases}
\]

\[
\alpha(n) = \min\{k : A_k(1) \geq n\}
\]

\[
A_0(j) = j + 1 \\
A_1(j) = A_0^{(j+1)}(j) = 2j + 1 \\
A_2(j) = A_1^{(j+1)}(j) = 2^{2^{2^{\cdots^{(2j + 1)\cdots}}}} + 1 + 1 = 2^{2^j + 1} - 1
\]
Ackerman

\[A_3(1) = A_2^{(2)}(1) \]
\[= A_2(A_2(1)) \]
\[= A_2(7) \]
\[= 2^8 \cdot 8 - 1 \]
\[= 2^{11} - 1 \]
\[= 2047 \]

\[A_4(1) = A_3^{(2)}(1) \]
\[= A_3(A_3(1)) \]
\[= A_3(2047) \]
\[= A_2^{(2048)}(2047) \]
\[\gg A_2(2047) \]
\[= 2^{2048} \cdot 2048 - 1 \]
\[> 2^{2048} \]
\[= (2^4)^{512} \]
\[= 16^{512} \]
\[\gg 10^{80}, \]
Summary

• Amortized time per operation is $\alpha(V)$.
• Can think of it as $\lg^* V$, which is slightly bigger.