Greedy Algorithms

Informal Definition A greedy algorithm makes its next step based only on the current “state” and “simple” calculations on the input.

- “easy” to design
- not always correct
- challenge is to identify when greedy is the correct solution

Examples

- Rod cutting is not greedy. e.g. $profit = (5, 10, 11, 15)$
- Matrix Chain is not greedy.
- Change with U.S. coins is greedy
- Shortest paths with non-negative edge lengths is greedy, but not in the obvious way.
Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods \((s_i, f_i)\) are:

\[(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)\]

Which ones should we schedule?
Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods \((s_i, f_i)\) are:

\[(1, 4), (3, 5), (0, 6), (5, 7), (3, 8), (5, 9), (6, 10), (8, 11), (8, 12), (2, 13), (12, 14)\]

Which ones should we schedule?
Code

1. Sort by finishing time, renumber with 1 having earliest finishing time
2. Output 1
3. $\text{last} = f_1$
4. for $i = 2$ to n
5. do if $(s_i \geq \text{last})$
6. then Output i
7. $\text{last} = f_i$
Proving a Greedy Algorithm is Optimal

Two components:

1. Optimal substructure

2. **Greedy Choice Property**: There exists an optimal solution that is consistent with the greedy choice made in the first step of the algorithm.
Optimal Substructure

Let \(c[i, j] \) be the number of activities scheduled from time \(i \) to time \(j \)

\[
c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset, \\
\max_{a_k \in S_{ij}} \{c[i, s_k] + c[f_k, j] + 1\} & \text{if } S_{ij} \neq \emptyset
\end{cases}
\] \hspace{1cm} (1)
Greedy Choice

Greedy Choice Property
1. Let S_k be a nonempty subproblem containing the set of activities that finish after activity a_k.
2. Let a_m be an activity in S_k with the earliest finish time.
3. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k.

Proof

• Let A_k be a maximum-size subset of mutually compatible activities in S_k,
• let a_j be the activity in A_k with the earliest finish time.
• If $a_j = a_m$, we are done, since we have shown that a_m is in some maximum-size subset of mutually compatible activities of S_k.
• If $a_j \neq a_m$, let the set $A'_k = A_k - \{a_j\} \cup \{a_m\}$
• The activities in A'_k are disjoint, because
 − the activities in A_k are disjoint,
 − a_j is the first activity in A_k to finish,
 − $f_m \leq f_j$.
• Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k, and it includes a_m.
Procedure for Designing a Greedy Algorithm

1. Identify optimal substructure
2. Cast the problem as a greedy algorithm with the greedy choice property
3. Write a simple iterative algorithm
Robbery

- I want to rob a house and I have a knapsack which holds B pounds of stuff
- I want to fill the knapsack with the most profitable items

<table>
<thead>
<tr>
<th>item</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>value</td>
<td>60</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>value/weight</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Two variants

- **integral knapsack**: Take an item or leave it
- **fractional knapsack**: Can take a fraction of an item (infinitely divisible)
Fractional vs. Integral Knapsack

- Both fractional and integral knapsack have optimal substructure.
- Only fractional knapsack has the greedy choice property.
Fractional Knapsack

Greedy Choice Property: Let \(j \) be the item with maximum \(v_i/w_i \). Then there exists an optimal solution in which you take as much of item \(j \) as possible.

Proof

- Suppose fpoc, that there exists an optimal solution in you didn’t take as much of item \(j \) as possible.
- If the knapsack is not full, add some more of item \(j \), and you have a higher value solution. **Contradiction**
- We thus assume the knapsack is full.
- There must exist some item \(k \neq j \) with \(v_k/w_k < v_j/w_j \) that is in the knapsack.
- We also must have that not all of \(j \) is in the knapsack.
- We can therefore take a piece of \(k \), with \(\epsilon \) weight, out of the knapsack, and put a piece of \(j \) with \(\epsilon \) weight in.
- This increases the knapsack’s value by

\[
\epsilon \frac{v_j}{w_j} - \epsilon \frac{v_k}{w_k} = \epsilon \left(\frac{v_j}{w_j} - \frac{v_k}{w_k} \right) > 0
\]

Contradiction to the original solution being optimal.
Algorithm

1. Sort items by \(v_j/w_j \), renumber.
2. For \(i = 1 \) to \(n \)
 - Add as much of item \(i \) as possible

Question Why does this fail for integer knapsack?
Dynamic Programming Algorithm

- Let $A[x, W]$ be the maximum value obtainable from items $1, \ldots, x$ using at most W weight.
- To compute $A[x, W]$, either
 1. item x is in the best solution
 2. item x is not.
Dynamic Programming Algorithm

- Let $A[x,W]$ be the maximum value obtainable from items $1, \ldots, x$ using at most W weight.
- To compute $A[x,W]$, either
 1. item x is in the best solution – include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most $W - w_x$.
 2. item x is not – then just use the best solution from $1, \ldots, x-1$ that has weight at most W.
Dynamic Programming Algorithm

- Let $A[x,W]$ be the maximum value obtainable from items $1, \ldots, x$ using at most W weight.

- To compute $A[x,W]$, either
 1. item x is in the best solution — include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most W.
 2. item x is not — then just use the best solution from $1, \ldots, x-1$ that has weight at most W.

\[
\]