Proving a bound by Induction

- Recurrence to solve: \(T(n) = 3T(n/3) + n \)
- Guess at a solution: \(T(n) = O(n \lg n) \)

Proof steps:
- Rewrite claim to remove big-O: \(T(n) \leq cn \lg n \) for some \(c \geq 0 \).
- “Assume” \(T(n') \leq cn' \lg n' \) for all \(n' < n \).
- Prove that the claim holds for \(n \). Here is the proof

\[
T(n) = 3T(n/3) + n \\
\leq 3(c(n/3) \lg(n/3)) + n \quad \text{(by inductive hypothesis since } n/3 < n) \\
= cn(\lg n - \lg 3) + n \\
= cn \lg n + n - cn \lg 3
\]

- Now we really want to choose \(c \) so that this last line is \(\leq cn \lg n \)
- Equivalently, we really want to choose \(c \) so that \(n - cn \lg 3 \leq 0 \)
- Equivalently, we really want to choose \(c \) so that \(c \lg 3 > 1 \)
- \(c = 1 \) works and completes the proof, as now \(n \lg n + n(1 - \lg 3) \leq n \lg n \)
Recurrences with a big-O in the $f(n)$

- Recurrences describing running times often have a big-O in the non-recursive term
- Consider $T(n) = 2T(n/2) + O(n)$
- What does the $O(n)$ mean?
Recurrences with a big-O in the $f(n)$

- Recurrences describing running times often have a big-O in the non-recursive term
- Consider $T(n) = 2T(n/2) + O(n)$
- What does the $O(n)$ mean?
- The $O(n)$ is describing an algorithm e.g. merge, that runs in time kn for some $k > 0$ that we don’t get to pick.

Claim: $T(n) = O(n \lg n)$

Question: What do this big-O mean?
Recurrences with a big-O in the $f(n)$

- Recurrences describing running times often have a big-O in the non-recursive term
- Consider $T(n) = 2T(n/2) + O(n)$
- What does the $O(n)$ mean?
- The $O(n)$ is describing an algorithm e.g. merge, that runs in time kn for some $k > 0$ that we don’t get to pick.

Claim: $T(n) = O(n \lg n)$

Question: What do this big-O mean?

Answer: $T(n) \leq cn \lg n$ for some $c > 0$, which we do get to pick.
Mechanics of Proof

Claim: The recurrence $T(n) = 2T(n/2) + kn$ has solution $T(n) \leq cn \lg n$.

Proof: Use mathematical induction. The base case (implicitly) holds (we didn’t even write the base case of the recurrence down).

Inductive step:

$$T(n) = 2T(n/2) + kn$$
$$\leq 2 \left(c \frac{n}{2} \lg \left(\frac{n}{2} \right) \right) + kn$$
$$= cn(\lg n - 1) + kn$$
$$= cn \lg n + kn - cn$$

Now we want this last term to be

$$\leq cn \lg n$$

, so we need $kn - cn \leq 0$

$$kn - cn \leq 0$$
$$\Leftrightarrow (k - c)n \leq 0$$
$$\Leftrightarrow (k - c) \leq 0$$
$$\Leftrightarrow k \leq c$$
Is $k \leq c$

- Recall that k is given to us (we don’t choose it).
- We get to choose c.
- So if we choose $c = k$, then we have satisfied $c \leq k$, and the proof is complete.
Proof subtlety

Sometimes we have the correct solution, but the proof by induction doesn’t work

- Consider \(T(n) = 4T(n/2) + n \)
- By the master theorem, the solution is \(O(n^2) \)

Proof by induction that \(T(n) \leq cn^2 \) for some \(c > 0 \).

\[
T(n) = 4T(n/2) + n \\
\leq 4 \left(c \left(\frac{n}{2} \right)^2 \right) + n \\
= cn^2 + n
\]

Now we want this last term to be

\[\leq cn^2 \]

, so we need \(n \leq 0 \)
Sometimes we have the correct solution, but the proof by induction doesn’t work.

- Consider $T(n) = 4T(n/2) + n$
- By the master theorem, the solution is $O(n^2)$

Proof by induction that $T(n) \leq cn^2$ for some $c > 0$.

$$T(n) = 4T(n/2) + n$$
$$\leq 4 \left(c \left(\frac{n}{2} \right)^2 \right) + n$$
$$= cn^2 + n$$

Now we want this last term to be
$$\leq cn^2$$
, so we need $n \leq 0$

UhOh No way is $n \leq 0$. What went wrong?
General Issue with proofs by induction

- Sometimes, you can’t prove something by induction because it is too weak. So your inductive hypothesis is not strong enough.
- The fix is to prove something stronger
- We will prove that $T(n) \leq cn^2 - dn$ for some positive constants c,d that we get to chose.
- We chose to add the $-dn$ because we noticed that there was an extra n in the previous proof.
The proof

Claim: \(T(n) \leq cn^2 - dn \) for some positive constants \(c, d \)

Proof:

\[
T(n) = 4T(n/2) + n \\
\leq 4 \left(c \left(\frac{n}{2} \right)^2 - d \frac{n}{2} \right) + n \\
= cn^2 - 2dn + n \\
= (cn^2 - dn) + (n - dn) \\
= (cn^2 - dn) + (1 - d)n
\]

Now we want this last term to be

\[
\leq cn^2 - dn
\]

so we need \((1 - d)n \leq 0 \). Just choose \(d = 2 \). We can choose \(c \) to be anything, say 1

Conclusion

\[
T(n) \leq cn^2 - 2n = O(n^2)
\]