Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Idea For each $A[i]$ compute the number of elements less than or equal to $A[i]$ use that to compute position.

Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Idea For each $A[i]$ compute the number of elements less than or equal to $A[i]$, and use that to compute position.

- Array $A[1 \ldots n]$ - holds input
- Array $C[1 \ldots k]-C[j]$ holds number of elements of A less than or equal to j

Example:

$$
\begin{array}{rlllllllll}
\text { index } 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline A: 2 & 9 & 1 & 8 & 6 & 5 & &
\end{array}
$$

Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Idea For each $A[i]$ compute the number of elements less than or equal to $A[i]$ and use that to compute position.

- Array $A[1 \ldots n]$ - holds input
- Array $C[1 \ldots k]-C[j]$ holds number of elements of A less than or equal to j

Example:

$$
\begin{array}{rlllllllll}
\text { index } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline A: & 2 & 9 & 1 & 8 & 6 & 5 & & & \\
C: & 1 & 2 & 2 & 2 & 3 & 4 & 4 & 5 & 6
\end{array}
$$

Questions

- How do we compute C?

Counting Sort

```
Counting - Sort \((A, B, k)\)
1 for \(i \leftarrow 0\) to \(k\)
2 do \(C[i] \leftarrow 0\)
for \(j \leftarrow 1\) to length \([A]\)
    do \(C[A[j]] \leftarrow C[A[j]]+1\)
\(\triangleright C[i]\) now contains the number of elements equal to \(i\).
for \(i \leftarrow 1\) to \(k\)
    do \(C[i] \leftarrow C[i]+C[i-1]\)
    \(\triangleright C[i]\) now contains the number of elements less than or equal to \(i\).
    for \(j \leftarrow\) length \([A]\) downto 1
        do \(B[C[A[j]]] \leftarrow A[j]\)
            \(C[A[j]] \leftarrow C[A[j]]-1\)
```


Analysis

- Running Time $O(n+k)$
- No Comparisons
- Doesn't work on all data
- Good when k is small
- When $k=O(n)$ we have run-time $O(n+k)=O(n)$
- Examples?

Stable Sorting

- We want to sort $x_{1}, x_{2}, \ldots, x_{n}$
- If $x_{i}>x_{j}$ then put x_{i} after x_{j}

Stable Sorting

- We want to sort $x_{1}, x_{2}, \ldots, x_{n}$
- If $x_{i}>x_{j}$ then put x_{i} after x_{j}
- But what if $x_{i}=x_{j}$

Stable Sorting

- We want to sort $x_{1}, x_{2}, \ldots, x_{n}$
- If $x_{i}>x_{j}$ then put x_{i} after x_{j}
- But what if $x_{i}=x_{j}$

Stable Sorting: if $i<j$ and $x_{i}=x_{j}$ then put x_{i} before x_{j}

Stable Sorting

- We want to sort $x_{1}, x_{2}, \ldots, x_{n}$
- If $x_{i}>x_{j}$ then put x_{j} after x_{i}
- But what if $x_{i}=x_{j}$

Stable Sorting: if $i<j$ and $x_{i}=x_{j}$ then put x_{i} before x_{j}
Question: Is counting sort stable?

Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?

Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?

- $n=150$
- $k=27^{2}>700$
- Running time is $150+700=850$

Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?

- $n=150$
- $k=27^{2}>700$
- Running time is $150+700=850$

Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.

Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by initials?

- $n=150$
- $k=27^{2}>700$
- Running time is $150+700=850$

Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.

Analysis

- Sorting a single letter: $150+27<200$
- Total running time: $2(150+27)<400$

Radix Sort

Radix - Sort (A, d)				
1 for $i \leftarrow 1$ to d				
2 do use a stable sort to sort array A on digit i				
Example				
379 STABLE SORT	912	STABLE SORT 802	STABLE SORT	258
$912 \quad \Rightarrow$	802	$\Rightarrow \quad 803$	\Rightarrow	259
258	823	804		269
269	803	912		279
823	804	823		379
259	258	258		802
803	379	259		803
279	269	269		804
804	359	379		823
802	279	279		912

Radix Sort Correctness

Radix - $\operatorname{Sort}(A, d)$
$1 \quad$ for $i \leftarrow 1$ to d
2 do use a stable sort to sort array A on digit i

Loop Invariant: After the ith iteration of the loop, the elements are sorted by their last i digits.

Radix Sort Correctness

Radix - Sort (A, d)
$1 \quad$ for $i \leftarrow 1$ to d
2 do use a stable sort to sort array A on digit i

Loop Invariant: After the ith iteration of the loop, the elements are sorted by their last i digits.

Inductive Step:

- Assume the invariant holds after $i-1$ iterations
- Need to prove that it holds after i iterations

Radix Sort Analysis

- n elements

Radix Sort Analysis

- n elements
- All elements have d digits
- Initials: $\quad d=2$
$-\mathbf{S S N}: d=9$
- Dictionary Words: $d=30$

Radix Sort Analysis

- n elements
- All elements have d digits
- Initials: $\quad d=2$
$-\mathbf{S S N}: d=9$
- Dictionary Words: $d=30$
- Digits are in base b
- Numbers: $\quad b=10$
- Words: $b=27$
- UNI (letter/number): $b=37$

Radix Sort Analysis

- n elements
- All elements have digits
- Initials: $d=2$
$-\mathbf{S S N}: d=9$
- Dictionary Words: $d=30$
- Digits are in base b
- Numbers: $b=10$
- Words: $b=27$
- UNI (letter/number): $b=37$

Radix Sort Running Time: $\quad O(d(n+b))$

Radix Sort Analysis

- n elements
- All elements have digits
- Initials: $d=2$
$-\mathbf{S S N}$: $d=9$
- Dictionary Words: $d=30$
- Digits are in base b
- Numbers: $b=10$
- Words: $b=27$
- UNI (letter/number): $b=37$

Radix Sort Running Time: $\quad O(d(n+b))$
Counting Sort Running Time: $\quad O(n+k)=O\left(n+b^{d}\right)$

Example

Setup : Sort everyone in columbia by UNI. Say $n=40,000$

Example

Setup : Sort everyone in columbia by UNI. Say $n=40,000$
Radix Sort:

- $d=7$
- $b=37$
- Running Time: $d(n+b)=7(40,000+37) \sim 280,000$

Example

Setup : Sort everyone in columbia by UNI. Say $n=40,000$
Radix Sort:

- $d=7$
- $b=37$
- Running Time: $d(n+b)=7(40,000+37) \sim 280,000$

Counting Sort:

- UNI $=7$-digit number in base 37 .
- $k=b^{d}=37^{7} \sim 10^{11}$
- Running Time: $n+k=40,000+37^{7} \sim 10^{11}$

Example

Setup : Sort everyone in columbia by UNI. Say $n=40,000$
Radix Sort:

- $d=7$
- $b=37$
- Running Time: $d(n+b)=7(40,000+37) \sim 280,000$

Counting Sort:

- UNI $=7$-digit number in base 37 .
- $k=b^{d}=37^{7} \sim 10^{11}$
- Running Time: $n+k=40,000+37^{7} \sim 10^{11}$

Merge Sort

- Running Time: $n \log (n)=40,000 \cdot \log (40,000) \sim 600,000$

