- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \dots k$.

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \dots k$.

Idea For each A[i] compute the number of elements less than or equal to A[i] use that to compute position.

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \dots k$.

Idea For each A[i] compute the number of elements less than or equal to A[i], and use that to compute position.

- Array A[1...n] holds input
- Array $C[1 \dots k] C[j]$ holds number of elements of A less than or equal to j

Example:

 index
 1
 2
 3
 4
 5
 6
 7
 8
 9

 A:
 2
 9
 1
 8
 6
 5
 5

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the *n* input elements is an integer in the range $1 \dots k$.

Idea For each A[i] compute the number of elements less than or equal to A[i] and use that to compute position.

- Array A[1...n] holds input
- Array $C[1 \dots k] C[j]$ holds number of elements of A less than or equal to j

Example:

 index
 1
 2
 3
 4
 5
 6
 7
 8
 9

 A: 2
 9
 1
 8
 6
 5
 C: 1
 2
 2
 3
 4
 4
 5
 6

Questions

• How do we compute C?

Counting Sort

Counting - Sort(A, B, k)for $i \leftarrow 0$ to k 1 2 do $C[i] \leftarrow 0$ 3 for $j \leftarrow 1$ to length[A]4 do $C[A[j]] \leftarrow C[A[j]] + 1$ $\triangleright C[i]$ now contains the number of elements equal to *i*. $\mathbf{5}$ for $i \leftarrow 1$ to k 6 do $C[i] \leftarrow C[i] + C[i-1]$ 7 $\triangleright C[i]$ now contains the number of elements less than or equal to i. 8 for $j \leftarrow length[A]$ downto 1 9 **do** $B[C[A[j]]] \leftarrow A[j]$ 10 $C[A[j]] \leftarrow C[A[j]] - 1$ 11

Analysis

- Running Time O(n+k)
- No Comparisons
- Doesn't work on all data
- Good when k is small
- When k = O(n) we have run-time O(n+k) = O(n)
- Examples?

- We want to sort $x_1, x_2, ..., x_n$
- If $x_i > x_j$ then put x_i after x_j

- We want to sort $x_1, x_2, ..., x_n$
- If $x_i > x_j$ then put x_i after x_j
- But what if $x_i = x_j$

- We want to sort $x_1, x_2, ..., x_n$
- If $x_i > x_j$ then put x_i after x_j
- But what if $x_i = x_j$

Stable Sorting: if i < j and $x_i = x_j$ then put x_i before x_j

- We want to sort $x_1, x_2, ..., x_n$
- If $x_i > x_j$ then put x_j after x_i
- But what if $x_i = x_j$

Stable Sorting: if i < j and $x_i = x_j$ then put x_i before x_j

Question: Is counting sort stable?

Question: Should we use counting sort to sort everyone in this class by initials?

Question: Should we use counting sort to sort everyone in this class by initials?

- n = 150
- $k = 27^2 > 700$
- Running time is 150 + 700 = 850

Question: Should we use counting sort to sort everyone in this class by initials?

- n = 150
- $k = 27^2 > 700$
- Running time is 150 + 700 = 850

Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.

Question: Should we use counting sort to sort everyone in this class by initials?

- n = 150
- $k = 27^2 > 700$
- Running time is 150 + 700 = 850

Improvement: Radix Sort

- Sort second initial
- Then stable sort by first initial.

Analysis

- Sorting a single letter: 150 + 27 < 200
- Total running time: 2(150 + 27) < 400

Radix Sort

Example

379 STABLE SORT	912 S	TABLE SORT	802	STABLE SORT	258
$912 \qquad \Rightarrow$	802	\Rightarrow	803	\Rightarrow	259
258	823		804		269
269	803		912		279
823	804		823		379
259	258		258		802
803	379		259		803
279	269		269		804
804	359		379		823
802	279		279		912

Radix Sort Correctness

Loop Invariant: After the ith iteration of the loop, the elements are sorted by their last i digits.

Radix Sort Correctness

Loop Invariant: After the ith iteration of the loop, the elements are sorted by their last i digits.

Inductive Step:

- Assume the invariant holds after i-1 iterations
- Need to prove that it holds after i iterations

 \bullet *n* elements

\bullet *n* elements

- All elements have d digits
 - Initials: d = 2
 - $-\mathbf{SSN:} \ \mathbf{d} = \mathbf{9}$
 - Dictionary Words: d = 30

\bullet *n* elements

- All elements have d digits
 - Initials: d = 2
 - **SSN:** d = 9
 - Dictionary Words: d = 30
- Digits are in base b
 - Numbers: b = 10
 - Words: b = 27
 - UNI (letter/number): b = 37

\bullet *n* elements

- All elements have d digits
 - Initials: d = 2
 - **SSN:** d = 9
 - Dictionary Words: d = 30
- Digits are in base b
 - Numbers: b = 10
 - Words: b = 27
 - UNI (letter/number): b = 37

Radix Sort Running Time: O(d(n+b))

\bullet *n* elements

- All elements have d digits
 - Initials: d = 2
 - **SSN:** d = 9
 - Dictionary Words: d = 30
- Digits are in base b
 - Numbers: b = 10
 - Words: b = 27
 - UNI (letter/number): b = 37

Radix Sort Running Time: O(d(n+b))

Counting Sort Running Time: $O(n+k) = O(n+b^d)$

Setup : Sort everyone in columbia by UNI. Say n = 40,000

Setup : Sort everyone in columbia by UNI. Say n = 40,000

Radix Sort:

- d = 7
- b = 37
- Running Time: $d(n+b) = 7(40,000+37) \sim 280,000$

Setup : Sort everyone in columbia by UNI. Say n = 40,000

Radix Sort:

- d = 7
- b = 37
- Running Time: $d(n+b) = 7(40,000+37) \sim 280,000$

Counting Sort:

- UNI = 7-digit number in base 37.
- $k = b^d = 37^7 \sim 10^{11}$
- Running Time: $n + k = 40,000 + 37^7 \sim 10^{11}$

Setup : Sort everyone in columbia by UNI. Say n = 40,000

Radix Sort:

- d = 7
- b = 37
- Running Time: $d(n+b) = 7(40,000+37) \sim 280,000$

Counting Sort:

- UNI = 7-digit number in base 37.
- $k = b^d = 37^7 \sim 10^{11}$
- Running Time: $n + k = 40,000 + 37^7 \sim 10^{11}$

Merge Sort

• Running Time: $nlog(n) = 40,000 \cdot \log(40,000) \sim 600,000$