
Sorting restricted ranges of numbers

• If the range is restricted, we can sort using more than comparisons and

swaps.

• Assume each of the n input elements is an integer in the range 1 . . . k .



Sorting restricted ranges of numbers

• If the range is restricted, we can sort using more than comparisons and

swaps.

• Assume each of the n input elements is an integer in the range 1 . . . k .

Idea For each A[i] compute the number of elements less than or equal to

A[i] use that to compute position.



Sorting restricted ranges of numbers

• If the range is restricted, we can sort using more than comparisons and

swaps.

• Assume each of the n input elements is an integer in the range 1 . . . k .

Idea For each A[i] compute the number of elements less than or equal to

A[i] , and use that to compute position.

• Array A[1 . . . n] – holds input

• Array C[1 . . . k] – C[j] holds number of elements of A less than or equal

to j

Example:
index 1 2 3 4 5 6 7 8 9

A : 2 9 1 8 6 5



Sorting restricted ranges of numbers

• If the range is restricted, we can sort using more than comparisons and

swaps.

• Assume each of the n input elements is an integer in the range 1 . . . k .

Idea For each A[i] compute the number of elements less than or equal to

A[i] and use that to compute position.

• Array A[1 . . . n] – holds input

• Array C[1 . . . k] – C[j] holds number of elements of A less than or equal

to j

Example:
index 1 2 3 4 5 6 7 8 9

A : 2 9 1 8 6 5

C : 1 2 2 2 3 4 4 5 6

Questions

• How do we compute C?



Counting Sort

Counting − Sort(A,B, k)

1 for i← 0 to k

2 do C[i]← 0

3 for j ← 1 to length[A]

4 do C[A[j]]← C[A[j]] + 1

5 � C[i] now contains the number of elements equal to i.

6 for i← 1 to k

7 do C[i]← C[i] + C[i− 1]

8 � C[i] now contains the number of elements less than or equal to i.

9 for j ← length[A] downto 1

10 do B[C[A[j]]]← A[j]

11 C[A[j]]← C[A[j]]− 1



Analysis

• Running Time O(n + k)

• No Comparisons

• Doesn’t work on all data

• Good when k is small

• When k = O(n) we have run-time O(n + k) = O(n)

• Examples?



Stable Sorting

• We want to sort x1, x2, ..., xn

• If xi > xj then put xi after xj



Stable Sorting

• We want to sort x1, x2, ..., xn

• If xi > xj then put xi after xj

• But what if xi = xj



Stable Sorting

• We want to sort x1, x2, ..., xn

• If xi > xj then put xi after xj

• But what if xi = xj

Stable Sorting: if i < j and xi = xj then put xi before xj



Stable Sorting

• We want to sort x1, x2, ..., xn

• If xi > xj then put xj after xi

• But what if xi = xj

Stable Sorting: if i < j and xi = xj then put xi before xj

Question: Is counting sort stable?



Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by

initials?



Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by

initials?

• n = 150

• k = 272 > 700

• Running time is 150 + 700 = 850



Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by

initials?

• n = 150

• k = 272 > 700

• Running time is 150 + 700 = 850

Improvement: Radix Sort

• Sort second initial

• Then stable sort by first initial.



Improving Counting Sort

Question: Should we use counting sort to sort everyone in this class by

initials?

• n = 150

• k = 272 > 700

• Running time is 150 + 700 = 850

Improvement: Radix Sort

• Sort second initial

• Then stable sort by first initial.

Analysis

• Sorting a single letter: 150 + 27 < 200

• Total running time: 2(150 + 27) < 400



Radix Sort

Radix− Sort(A, d)

1 for i← 1 to d

2 do use a stable sort to sort array A on digit i

Example

379 STABLE SORT 912 STABLE SORT 802 STABLE SORT 258

912 ⇒ 802 ⇒ 803 ⇒ 259

258 823 804 269

269 803 912 279

823 804 823 379

259 258 258 802

803 379 259 803

279 269 269 804

804 359 379 823

802 279 279 912



Radix Sort Correctness

Radix− Sort(A, d)

1 for i← 1 to d

2 do use a stable sort to sort array A on digit i

Loop Invariant: After the ith iteration of the loop, the elements are sorted

by their last i digits.



Radix Sort Correctness

Radix− Sort(A, d)

1 for i← 1 to d

2 do use a stable sort to sort array A on digit i

Loop Invariant: After the ith iteration of the loop, the elements are sorted

by their last i digits.

Inductive Step:

• Assume the invariant holds after i− 1 iterations

• Need to prove that it holds after i iterations



Radix Sort Analysis

• n elements



Radix Sort Analysis

• n elements

• All elements have d digits

– Initials: d = 2

– SSN: d = 9

– Dictionary Words: d = 30



Radix Sort Analysis

• n elements

• All elements have d digits

– Initials: d = 2

– SSN: d = 9

– Dictionary Words: d = 30

• Digits are in base b

– Numbers: b = 10

– Words: b = 27

– UNI (letter/number): b = 37



Radix Sort Analysis

• n elements

• All elements have d digits

– Initials: d = 2

– SSN: d = 9

– Dictionary Words: d = 30

• Digits are in base b

– Numbers: b = 10

– Words: b = 27

– UNI (letter/number): b = 37

Radix Sort Running Time: O(d(n + b))



Radix Sort Analysis

• n elements

• All elements have d digits

– Initials: d = 2

– SSN: d = 9

– Dictionary Words: d = 30

• Digits are in base b

– Numbers: b = 10

– Words: b = 27

– UNI (letter/number): b = 37

Radix Sort Running Time: O(d(n + b))

Counting Sort Running Time: O(n + k) = O(n + bd)



Example

Setup : Sort everyone in columbia by UNI. Say n = 40, 000



Example

Setup : Sort everyone in columbia by UNI. Say n = 40, 000

Radix Sort:

• d = 7

• b = 37

• Running Time: d(n + b) = 7(40, 000 + 37) ∼ 280, 000



Example

Setup : Sort everyone in columbia by UNI. Say n = 40, 000

Radix Sort:

• d = 7

• b = 37

• Running Time: d(n + b) = 7(40, 000 + 37) ∼ 280, 000

Counting Sort:

• UNI = 7-digit number in base 37.

• k = bd = 377 ∼ 1011

• Running Time: n + k = 40, 000 + 377 ∼ 1011



Example

Setup : Sort everyone in columbia by UNI. Say n = 40, 000

Radix Sort:

• d = 7

• b = 37

• Running Time: d(n + b) = 7(40, 000 + 37) ∼ 280, 000

Counting Sort:

• UNI = 7-digit number in base 37.

• k = bd = 377 ∼ 1011

• Running Time: n + k = 40, 000 + 377 ∼ 1011

Merge Sort

• Running Time: nlog(n) = 40, 000 · log(40, 000) ∼ 600, 000


