
Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.

2 for i = 1to k

3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.

2 for i = 1to k

3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

• Worst case analysis. Each round, I might get n dollars, there are k

rounds, so I receive at most nk dollars.

Amortized Analysis

DistributeMoney(n, k)

1 Each of n people gets $1.

2 for i = 1to k

3 do Give a dollar to a random person

What is the maximum amount of money I can receive?

• Worst case analysis. Each round, I might get n dollars, there are k

rounds, so I receive at most nk dollars.

• Amortized lesson. Sometimes a standard worst case analysis is too

weak. It doesn’t take into account (worst-case) dependencies between

what happens at each step.

An example we have already seen

• Building a heap in heapsort.

– Each insert takes O(lg n) time.

– Insert n items

– Total of O(n lg n) time.

• Buildheap – While any one insert may take lg n time, when you do

a sequence of n of them, bottom up, you can argue that the whole

sequence takes O(n) time.

Amortized Analysis

Multipop(S, k)

1 while not Stack-Empty(S) and k 6= 0

2 do Pop(S)

3 k ← k − 1

Some Analysis

• Push – O(1) time

• Pop – O(1) time.

• Multipop(k) – O(k) time.

Analysis

• Each op takes O(k) time.

• k ≤ n , so each op takes O(n) time

• n operations take O(n2) time.

Can you construct a sequence of n operations that take Ω(n2) time?

The right approach

Claim Starting with an empty stack, any sequence of n Push, Pop, and

Multipop operations take O(n) time.

• We say that the amortized time per operation is O(n)/n = O(1) .

• 3 types of amortized analysis

– Agggretate Analysis

– Banker’s (charging scheme) method

– Physicist’s (potential function) method

Aggregate Analysis

• Call Pop - multipop(1)

• Let m(i) be the number of pops done in the i th multipop

• Let p be the number of pushes done overall.

Claim ∑
i
m(i) ≤ p

Anlysis

total time = pushes + time for all multipops

= p +
∑
i
m(i)

≤ p + p

= 2p

≤ 2n

Banker’s Method

• Each operation has a real cost ci and an amortized cost ĉi .

• The amortized costs as valid if :

∀` ∑̀
i=1

ĉi ≥
∑̀
i=1

ci.

Methodology

• Show that the amortized costs are valid

• Show that
∑`
i=1 ĉi ≤ X , for some X .

• Conclude that the total cost is at most X .

Why is the conclusion valid?

∑̀
i=1

ci ≤
∑̀
i=1

ĉi ≤ X.

Important: Your work is to come up with the amortized costs and to

show that they are valid.

Banker’s Method for Multipop

Real Cost ci Amortized cost ĉi
Push 1 2

Pop 1 0

Multipop(k) k 0

Potential Function Method

• Let Di be the “state” of the system after the i th operation.

• Define a potential function Φ(Di) to be the potential associated with

state Di .

• The i th operation has a real cost of ci

• Define the amortized cost ĉi of the i th operation by

ĉi = ci + Φ(Di)− Φ(Di−1)

Why are we bothering?

• The amortized costs give us a nicer way of analyzing operations of vary-

ing real cost (like multipop)

• We use the potential function to “smooth” out the difference

First, the math

Potential function

• Let Di be the “state” of the system after the i th operation.

• Define a potential function Φ(Di) to be the potential associated with

state Di .

• The i th operation has a real cost of ci

• Define the amortized cost ĉi of the i th operation by

ĉi = ci + Φ(Di)− Φ(Di−1)

n∑
i=1

ĉi =
n∑

i=1
(ci + Φ(Di)− Φ(Di−1))

=

 n∑
i=1

ci


+ (Φ(D1)− Φ(D0)) + (Φ(D2)− Φ(D1)) + . . . + (Φ(Dn−1)− Φ(Dn−2)) + (Φ(Dn)− Φ(Dn−1))

=
n∑

i=1
ci + Φ(Dn)− Φ(D0)

Potential function

• Let Di be the “state” of the system after the i th operation.

• Define a potential function Φ(Di) to be the potential associated with

state Di .

• The i th operation has a real cost of ci

• Define the amortized cost ĉi of the i th operation by ĉi = ci + Φ(Di)− Φ(Di−1)

• Summing, we have
∑n
i=1 ĉi =

∑n
i=1 ci + Φ(Dn)− Φ(D0) .

Using this

• Suppose that Φ(Dn) ≥ Φ(D0) .

• Then
∑n
i=1 ĉi ≥

∑n
i=1 ci

• Next suppose that we have an upper bound X on
∑n
i=1 ĉi .

• Putting it all together we have

X ≥
n∑

i=1
ĉi ≥

n∑
i=1

ci

Conclusion: X is an upper bound on the real cost.

Using this method

• Choose an appropriate potential function Φ

• Show that Φ(D0) = 0

• Show that Φ(Dn) ≥ 0

• Given an upper bound of X on
∑n
i=1 ĉi .

• Declare victory and celebrate, secure in the knowledge that your real

cost for any n operations is upper bounded by X

Applying the Method to Multipop

• Choose Φ(Di) to be the number of items on the stack after the i th

operation.

• Clearly,

– Φ(D0) = 0 because initial stack is empty

– Φ(Dn) ≥ 0 because Φ is always non-negative.

• Now let’s compute amortized cost of each operation.

Applying the Method to Multipop

• Choose Φ(Di) to be the number of items on the stack after the i th

operation.

Push: Φ(Di)− Φ(Di−1) = 1

So

ĉi = ci + Φ(Di)− Φ(Di−1) = 1 + 1 = 2

Pop: Φ(Di)− Φ(Di−1) = −1

So

ĉi = ci + Φ(Di)− Φ(Di−1) = 1− 1 = 0

MultiPop of k items: Φ(Di)− Φ(Di−1) = −k
So

ĉi = ci + Φ(Di)− Φ(Di−1) = k − k = 0

Concluding

• For any operation ĉi ≤ 2 .

• So for any n operations,
∑n
i=1 ĉi ≤ 2n .

• Concluding, this means that for any n operations,
∑n
i=1 ci ≤ 2n .

Binary Counter

Increment(A)

1 i← 0

2 while i < length[A] and A[i] = 1

3 do A[i]← 0

4 i← i + 1

5 if i < length[A]

6 then A[i]← 1

Question: How many times is a bit flipped, while doing n increments on

a k bit counter?

Example of a 4 bit counter

Bits # of bits flipped

0000

0001 1

0010 2

0011 1

0100 3

0101 1

0110 2

0111 1

1000 4

1001 1

1010 2

1011 1

1100 3

1101 1

1110 2

1111 1

0000 4

Is there some structure here?

Example of a 4 bit counter

Bits # of bits flipped number of new 1’s

0000

0001 1 1

0010 2 1

0011 1 1

0100 3 1

0101 1 1

0110 2 1

0111 1 1

1000 4 1

1001 1 1

1010 2 1

1011 1 1

1100 3 1

1101 1 1

1110 2 1

1111 1 1

0000 4 0

Is there some structure here? The number of new 1’s is at most 1. Can

we charge new 0’s to new 1’s?

Example of a 4 bit counter

Bits # of bits flipped number of new 1’s

0000

0001 1 1

0010 2 1

0011 1 1

0100 3 1

0101 1 1

0110 2 1

0111 1 1

1000 4 1

1001 1 1

1010 2 1

1011 1 1

1100 3 1

1101 1 1

1110 2 1

1111 1 1

0000 4 0

Is there some structure here? The number of new 1’s is at most 1. Can

we charge new 0’s to new 1’s?

Example of a 4 bit counter

Bits # of bits flipped number of new 1’s

0000

0001 1 1

0010 2 1

0011 1 1

0100 3 1

0101 1 1

0110 2 1

0111 1 1

1000 4 1

1001 1 1

1010 2 1

1011 1 1

1100 3 1

1101 1 1

1110 2 1

1111 1 1

0000 4 0

TOTAL 30 15

Is there some structure here? The number of new 1’s is at most 1. Can

we charge new 0’s to new 1’s? Seem to be twice as many flips as switches

from 0 to 1.

Banker’s Analysis

• For each increment, pay $1, and leave $1 to pay for the flip back to 0.

amortized cost of 2.

• Number of flips to 0 ≤ number of flips to 1.

• Always sufficient money in the bank.

• Amortized cost is therefor valid.

• Total of n cost for n operations.

• Independent of k !!

Potential Function

Definitions

• f01 is the number of bits flipped from 0 to 1 .

• f10 is the number of bits flipped from 1 to 0 .

• Potential function Φ(Dk) is the number of 1 ’s in the current counter

state.

First check that potential function is valid

• Φ(D0) = 0 , since the initial state is 0

• Φ(Di ≥ 0) always.

Now compute amortized cost

ĉi = ci + Φ(Di)− Φ(Di−1)

= (f01 + f10) + (f01 − f10)

= 2f01

≤ 2 · 1
= 2

So the amortized cost is 2.

Note that when there is wraparound the cost is actually 0, every other

time it is 2.

Aggregate Analysis

• Look at the columns of the example and count how many times there

is a flip in each column.

• Last column – n

• Penultimate column – n/2

• . . .

• First column – n/2k

Total flips

n + n/2 + n/4 + · · · + n/2k ≤ n + n/2 + n/4 + · · · ≤ 2n

Table Insert

Table-Insert(T, x)

1 if size[T] = 0

2 then allocate table[T] with 1 slot

3 size[T]← 1

4 if num[T] = size[T]

5 then allocate new -table with 2 · size[T] slots

6 insert all items in table[T] into new -table

7 free table[T]

8 table[T]← new -table

9 size[T]← 2 · size[T]

10 insert x into table[T]

11 num[T]← num[T] + 1

A potential function for table insert

Real cost

ci =

 i if i− 1 is a power of 2

1 otherwise

Potential function

• ∆Φ should be constant for a normal insert

• ∆Φ should drop by about i for an expensive insert.

Φ(Ti) = 2 num(Ti)− size(Ti)

Analysis

Φ(Ti) = 2 num(Ti)− size(Ti)

Analysis Case 1: No table doubling (num i = num i−1 +1 , size i = size i−1)

ĉi = ci + Φi − Φi−1

= 1 + 2 num i− size i−(2 num i−1− size i−1)

= 1 + 2(num i− num i−1)− (sizei − size i−1)

= 1 + 2(1)− 0

= 3

Case 2: Table doubling (num i = num i−1 +1 , size i = 2 ∗ size i−1)

ĉi = ci + Φi − Φi−1

= (1 + size i−1) + 2 num i− size i−(2 num i−1− size i−1)

= (1 + size i−1) + 2(num i− num i−1)− (sizei − size i−1)

= (1 + size i−1 +2(1)− (2 size i−1− size i−1)

= 3 + size i−1− size i−1

= 3

So any n operations take at most 3n time.

