Dealing with NP-Completeness

Note: We will resume talking about optimization problems, rather than yes/no questions.

What to do?

- Give up
- Solve small instances
- Look for special structure that makes your problem easy (e.g. planar graphs, each variable in at most 2 clauses, ...)
- Run an exponential time algorithm that might do well on some instances (e.g. branch-and-bound, integer programming, constraint programming)
- Heuristics - algorithms that run for a limited amount of time and return a solution that is hopefully close to optimal, but with no guarantees
- Approximation Algorithms - algorithms that run in polynomial time and give a guarantee on the quality of the solution returned

Heuristics

- Simple algorithms like "add max degree vertex to the vertex cover"
- Metaheuristics are popular
- Greedy
- Local search
- tabu search
- simulated annealing
- genetic algorithms

Approximation Algorithms

Set up: We have a minimization problem X, inputs I, algorithm A.

- $O P T(I)$ is the value of the optimal solution on input I.
- $A(I)$ is the value returned when running algorithm A on input I.

Def: Algorithm A is an ρ-approximation algorithm for Problem X if, for all inputs I

- A runs in polynomial time
- $A(I) \leq \rho O P T(I)$.

Note: $\rho \geq 1$, small ρ is good.

A 2-approximation for Vertex Cover

Problem Definition:

- Put a subset of vertices into vertex cover $V C$.
- Requirement: For every edge (u, v), either u or v (or both) is in $V C$
- Goal: minimize number of vertices in $V C$

Basic Approach: while some edge is still not covered

- Pick an arbitrary uncovered edge (u, v)
- add either u or v to the vertex cover
- We have to make a choice: do we add u or v ? It matters a lot!
- Solution: cover both

The Algorithm: While there exists an uncovered edge:

1. pick an arbitrary uncovered edge (u, v)
2. add both u and v to the vertex cover $V C$.

Analysis

The Algorithm: While there exists an uncovered edge:

1. Pick an arbitrary uncovered edge (u, v).
2. Add both u and v to the vertex cover $V C$.

VC is a vertex cover: the algorithm only terminates when all edges are covered

Solution value:

- Let $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)$ be edges picked in step 1 of the algorithm
- $|V C|=2 k$

Claim: $\quad O P T \geq k$

- The edges $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)$ are disjoint.
- For each edge $\left(u_{i}, v_{i}\right)$, any vertex cover must contain u_{i} or v_{i}.

Conclusion: $\quad k \leq O P T \leq|V C| \leq 2 k$
In other words: $O P T \leq|V C| \leq 2 O P T$.
We have a 2-approximation algorithm.

Methodology

Lower bound: Given an instance I, a lower bound, $L B(I)$ is an "easilycomputed" value such that $L B(I) \leq O P T(I)$.

Methodology

- Compute a lower bound $L B(I)$.
- Give an algorithm A, that computes a solution to the optimization problem on input I with a guarantee that $A(I) \leq \rho L B(I)$ for some $\rho \geq 1$.
- Conclude that $A(I) \leq \rho O P T(I)$.

Euler Tour

- Give an even-degree graph G, an Euler Tour is a (non-simple) cycle that visits each edge exactly once.
- Every even-edgee graph has an Euler tour.
- You can find one in linear time.

Travelling Salesman Problem

Variant: We will consider the symmetric TSP with triangle-inequality.

- Complete graph where each edge (a, b) has non-negative weight $w(a, b)$
- Symmetric: $w(a, b)=w(b, a)$
- Triangle Inequality: $w(a, b) \leq w(a, c)+w(c, b)$
- Objective: find cycle $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ that goes through all vertices and has minimum weight.

Notes:

- Without triangle inequality, you cannot approximate TSP (unless $\mathrm{P}=\mathrm{NP}$)
- Asymmetric version is harder to approximate.

Approximating TSP

Find a convenient lower bound: minimum spanning tree!

$$
M S T(I) \leq O P T(I)
$$

- A minimum spanning tree doubled is an even degree graph $G G$, and therefore has an Euler tour of total length $G G(I)$, with $G G(I)=2 M S T(I)$
- Because of triangle inequality, we can "shortcut" the Euler tour $G G$ to find a tour with $T S P(I) \leq G G(I)$

Combining, we have

$$
M S T(I) \leq O P T(I) \leq T S P(I) \leq G G(I)=2 M S T(I)
$$

- 2-approximation for TSP
- 3/2-approximation is possible.
- If points are in the plane, there exists a polynomial time approximation scheme, an algorithm that, for any fixed $\epsilon>0$ returns a tour of length at most $(1+\epsilon) O P T(I)$ in polynomial time. (The dependence on ϵ can be large).

MAX-3-SAT

Definition Given a boolean CNF formula with 3 literals per clause. We want to satisfy the maximum possible number of clauses.

Note: We have to invert defintion of approximation, want to find $\rho A(I) \geq O P T(I)$

Algorithm

- Randomly set each variable to true with probability $1 / 2$.

Analysis

Find an upper bound: $\quad O P T(I) \leq m$ (duh)
Algorithm:

- Let Y be the number of clauses satisfied.
- Let m be the number of clauses. ($m \geq O P T(I)$).
- Let Y_{i} be the i.r.v representing the i th clause being satisfied.
- $Y=\sum_{i=1}^{m} Y_{i}$.
- $E[Y]=\sum_{i=1}^{m} E\left[Y_{i}\right]$.
- What is $E\left[Y_{i}\right]$, the probability that the i th clause is true?
- The only way for a clause to be false is for all three literals to be false
- The probability a clause is false is therefore $(1 / 2)^{3}=1 / 8$
- Probability a clause is true is therefore $1-1 / 8=7 / 8$.
- Finishing, $E\left[Y_{i}\right]=7 / 8$.
- $E[Y]=(7 / 8) m$
- $E[Y]=(7 / 8) m \geq(7 / 8) O P T(I)$

Conclusion $7 / 8$-approximation algorithm.

Approximation Lower Bounds:

Standard NP-completeness: Assuming $P \neq N P$, there is no polynomial time algorithm for max 3 -sat

Can Prove: Assuming $P \neq N P$, there is no polynomial time algorithm that achieves a $7 / 8+.00001$ approximation to max 3 -sat.

Simple algorithm is sometimes the best one:

- Max 3-sat: 7/8-approximation algorithm is optimal
- Vertex Cover: 2-approximation algorithm is optimal assuming popular conjecture (unique games conjecture).

Note: Not all approximation algorithms are simple!
Note: Sometimes NO constant approximation is possible.
Note: For many problems, do not have matching upper and lower bounds on approximation ratio.

Proving an Approximation Lower Bound

Example: TSP without triangle inequality not possible to approximate.
Claim: There is no 10-approximation for TSP (assuming $P \neq N P$).

- Reduction from Hamiltonian Cycle.
- Let G be a graph with n vertices.
- Will Show: poly-time algorithm for 10-approximation to TSP implies poly-time algorithm to determine if G has a Hamiltonian cycle.
- Reduction: Form a complete graph G^{\prime} where $w(u, v)=1$ if $(u, v) \in G$ and $w(u, v)=20 n$ otherwise.
- Let $O P T\left(G^{\prime}\right)$ be minimum traveling salesman cost for G^{\prime}.
- Claim: if G has a Hamiltonian cycle then $\operatorname{OPT}\left(G^{\prime}\right)=n$.
- Claim: if G has no Hamiltonian cycle then $O P T\left(G^{\prime}\right) \geq 20 n$.
- TSP approximation: Our TSP algorithm is a 10-approximation:

$$
O P T\left(G^{\prime}\right) \leq T S P\left(G^{\prime}\right) \leq 10 O P T\left(G^{\prime}\right)
$$

- Reduction Complete: G has a Hamiltonian cycle if and only if $\operatorname{TSP}\left(G^{\prime}\right) \leq 10 n$

Reductions do Not Preserve Approximation

Exact Algorithms: A polynomial time algorithm for vertex cover implies a polynomial time algorithm for maximum clique.

Approximation Algorithms: A poly-time algorithm for 2-approximate vertex cover does NOT imply a poly-time algorithm for 2 -approximate maximum clique.

Min Vertex Cover and Max Clique

Def: Let G^{\prime} be the complement graph of G : edges are replaced by non-edges.

Review: $\operatorname{MaxClique}(G)=n-\operatorname{MinVertexCover}\left(G^{\prime}\right)$
Not Approximation Preserving:

- Say we want an approximation to MaxClique(G)
- Can we use our 2-approximation to MinVertexCover?
- Let $n=1000$
- Compute a 2-approximation to MinVertexCover(G'). Say we learn:

$$
450 \leq \operatorname{MinVertexCover}\left(G^{\prime}\right) \leq 900
$$

- Conclusion: $100 \leq \operatorname{MaxClique}(G) \leq 550$
- Quality: Not a 2-approximation!

Lower Bound: There is no good approximation to maximum clique (assuming $P \neq N P$).

Set Cover

An instance (X, \mathcal{F}) of the set-covering problem consists of a finite set X and a family \mathcal{F} of subsets of X, such that every element of X belongs to at least one subset in \mathcal{F} :

$$
X=\bigcup_{S \in \mathcal{F}} S .
$$

We say that a subset $S \in \mathcal{F}$ covers its elements. The problem is to find a minimum-size subset $\mathcal{C} \subseteq \mathcal{F}$ whose members cover all of X :

$$
X=\bigcup_{S \in \mathcal{C}} S
$$

Greedy Algorithm

```
\(\frac{\text { Greedy-Set-Cover }}{U \leftarrow X}(X, \mathcal{F})\)
\(\mathscr{C} \leftarrow X\)
\(\mathcal{C} \leftarrow \emptyset\)
while \(U \neq \emptyset\)
    do select an \(S \in \mathcal{F}\) that maximizes \(|S \cap U|\)
        \(U \leftarrow U-S\)
        \(\mathcal{C} \leftarrow \mathcal{C} \cup\{S\}\)
return \(\mathcal{C}\)
```

Claim: If the optimal set cover has k elements, then \mathcal{C} has at most $k \log n$ elements.

Proof

Claim: If the optimal set cover has k sets, then \mathcal{C} has at most $k \log n$ sets.

Proof:

- Optimal set cover has k sets.
- One of the sets must therefore cover at least n / k of the elements.
- First greedy step must therefore choose a set that covers at least n / k of the elements.
- After first greedy step, the number of uncovered elements is at most $n-n / k=n(1-1 / k)$.

Proof continued

Iterate argument

- On remaining uncovered elements, one set in optimal must cover at least a $1 / k$ fraction of the remaining elements.
- So after two steps, the number of uncovered elements is at most

$$
n\left(1-\frac{1}{k}\right)^{2}
$$

So after j iterations, the number of uncovered elements is at most

$$
n\left(1-\frac{1}{k}\right)^{j} \leq n e^{-j / k}
$$

When $j=k \ln n$, the numer of uncovered elements is at most

$$
n e^{-j / k}=n e^{-k \ln n / k}=n e^{-\ln n}=n / n=1
$$

Therefore, the algorithm stops after choosing at most $k \ln n$ sets (without knowing k.

