
Dealing with NP-Completeness

Note: We will resume talking about optimization problems, rather than

yes/no questions.

What to do?

• Give up

• Solve small instances

• Look for special structure that makes your problem easy (e.g. planar

graphs, each variable in at most 2 clauses, ...)

• Run an exponential time algorithm that might do well on some in-

stances (e.g. branch-and-bound, integer programming, constraint pro-

gramming)

• Heuristics – algorithms that run for a limited amount of time and return

a solution that is hopefully close to optimal, but with no guarantees

• Approximation Algorithms – algorithms that run in polynomial time

and give a guarantee on the quality of the solution returned



Heuristics

• Simple algorithms like “add max degree vertex to the vertex cover”

• Metaheuristics are popular

– Greedy

– Local search

– tabu search

– simulated annealing

– genetic algorithms



Approximation Algorithms

Set up: We have a minimization problem X , inputs I , algorithm A .

• OPT (I) is the value of the optimal solution on input I .

• A(I) is the value returned when running algorithm A on input I .

Def: Algorithm A is an ρ -approximation algorithm for Problem X if,

for all inputs I

• A runs in polynomial time

• A(I) ≤ ρOPT (I) .

Note: ρ ≥ 1 , small ρ is good.



A 2-approximation for Vertex Cover

Problem Definition:

• Put a subset of vertices into vertex cover V C .

• Requirement: For every edge (u, v) , either u or v (or both) is in V C

• Goal: minimize number of vertices in V C

Basic Approach: while some edge is still not covered

• Pick an arbitrary uncovered edge (u, v)

• add either u or v to the vertex cover

• We have to make a choice: do we add u or v ? It matters a lot!

• Solution: cover both

The Algorithm: While there exists an uncovered edge:

1. pick an arbitrary uncovered edge (u, v)

2. add both u and v to the vertex cover V C .



Analysis

The Algorithm: While there exists an uncovered edge:

1. Pick an arbitrary uncovered edge (u, v) .

2. Add both u and v to the vertex cover V C .

VC is a vertex cover: the algorithm only terminates when all edges are

covered

Solution value:

• Let (u1, v1), (u2, v2), ..., (uk, vk) be edges picked in step 1 of the algorithm

• |V C| = 2k

Claim: OPT ≥ k

• The edges (u1, v1), (u2, v2), ..., (uk, vk) are disjoint.

• For each edge (ui, vi) , any vertex cover must contain ui or vi .

Conclusion: k ≤ OPT ≤ |V C| ≤ 2k

In other words: OPT ≤ |V C| ≤ 2OPT .

We have a 2-approximation algorithm.



Methodology

Lower bound: Given an instance I , a lower bound, LB(I) is an “easily-

computed” value such that LB(I) ≤ OPT (I).

Methodology

• Compute a lower bound LB(I) .

• Give an algorithm A , that computes a solution to the optimization

problem on input I with a guarantee that A(I) ≤ ρLB(I) for some

ρ ≥ 1 .

• Conclude that A(I) ≤ ρOPT (I) .



Euler Tour

• Give an even-degree graph G , an Euler Tour is a (non-simple) cycle

that visits each edge exactly once.

• Every even-edgee graph has an Euler tour.

• You can find one in linear time.



Travelling Salesman Problem

Variant: We will consider the symmetric TSP with triangle-inequality.

• Complete graph where each edge (a, b) has non-negative weight w(a, b)

• Symmetric: w(a, b) = w(b, a)

• Triangle Inequality: w(a, b) ≤ w(a, c) + w(c, b)

• Objective: find cycle v1, v2, ..., vn, v1 that goes through all vertices and

has minimum weight.

Notes:

• Without triangle inequality, you cannot approximate TSP (unless P=NP)

• Asymmetric version is harder to approximate.



Approximating TSP

Find a convenient lower bound: minimum spanning tree!

MST (I) ≤ OPT (I)

• A minimum spanning tree doubled is an even degree graph GG , and

therefore has an Euler tour of total length GG(I) , with GG(I) = 2MST (I)

.

• Because of triangle inequality, we can “shortcut” the Euler tour GG

to find a tour with TSP (I) ≤ GG(I)

Combining, we have

MST (I) ≤ OPT (I) ≤ TSP (I) ≤ GG(I) = 2MST (I)

• 2-approximation for TSP

• 3/2-approximation is possible.

• If points are in the plane, there exists a polynomial time approximation

scheme, an algorithm that, for any fixed ε > 0 returns a tour of length

at most (1 + ε)OPT (I) in polynomial time. (The dependence on ε can

be large).



MAX-3-SAT

Definition Given a boolean CNF formula with 3 literals per clause. We

want to satisfy the maximum possible number of clauses.

Note: We have to invert defintion of approximation, want to find ρA(I) ≥ OPT (I)

Algorithm

• Randomly set each variable to true with probability 1/2 .



Analysis

Find an upper bound: OPT (I) ≤ m (duh)

Algorithm:

• Let Y be the number of clauses satisfied.

• Let m be the number of clauses. ( m ≥ OPT (I) ).

• Let Yi be the i.r.v representing the i th clause being satisfied.

• Y =
∑m
i=1 Yi .

• E[Y ] =
∑m
i=1E[Yi] .

• What is E[Yi] , the probability that the i th clause is true?

– The only way for a clause to be false is for all three literals to be false

– The probability a clause is false is therefore (1/2)3 = 1/8

– Probability a clause is true is therefore 1− 1/8 = 7/8 .

• Finishing, E[Yi] = 7/8 .

• E[Y ] = (7/8)m

• E[Y ] = (7/8)m ≥ (7/8)OPT (I)

Conclusion 7/8 -approximation algorithm.



Approximation Lower Bounds:

Standard NP-completeness: Assuming P 6= NP , there is no polynomial

time algorithm for max 3-sat

Can Prove: Assuming P 6= NP , there is no polynomial time algorithm

that achieves a 7/8 + .00001 approximation to max 3-sat.

Simple algorithm is sometimes the best one:

• Max 3-sat: 7/8-approximation algorithm is optimal

• Vertex Cover: 2-approximation algorithm is optimal assuming popular

conjecture (unique games conjecture).

Note: Not all approximation algorithms are simple!

Note: Sometimes NO constant approximation is possible.

Note: For many problems, do not have matching upper and lower bounds

on approximation ratio.



Proving an Approximation Lower Bound

Example: TSP without triangle inequality not possible to approximate.

Claim: There is no 10-approximation for TSP (assuming P 6= NP ).

• Reduction from Hamiltonian Cycle.

• Let G be a graph with n vertices.

• Will Show: poly-time algorithm for 10-approximation to TSP implies

poly-time algorithm to determine if G has a Hamiltonian cycle.

• Reduction: Form a complete graph G′ where w(u, v) = 1 if (u, v) ∈ G
and w(u, v) = 20n otherwise.

• Let OPT (G′) be minimum traveling salesman cost for G′.

• Claim: if G has a Hamiltonian cycle then OPT (G′) = n .

• Claim: if G has no Hamiltonian cycle then OPT (G′) ≥ 20n .

• TSP approximation: Our TSP algorithm is a 10-approximation:

OPT (G′) ≤ TSP (G′) ≤ 10OPT (G′)

• Reduction Complete: G has a Hamiltonian cycle if and only if TSP (G′) ≤ 10n



Reductions do Not Preserve Approximation

Exact Algorithms: A polynomial time algorithm for vertex cover implies

a polynomial time algorithm for maximum clique.

Approximation Algorithms: A poly-time algorithm for 2-approximate

vertex cover does NOT imply a poly-time algorithm for 2-approximate

maximum clique.



Min Vertex Cover and Max Clique

Def: Let G′ be the complement graph of G : edges are replaced by

non-edges.

Review: MaxClique(G) = n−MinV ertexCover(G′)

Not Approximation Preserving:

• Say we want an approximation to MaxClique(G)

• Can we use our 2-approximation to MinVertexCover?

• Let n = 1000

• Compute a 2-approximation to MinVertexCover(G’). Say we learn:

450 ≤MinV ertexCover(G′) ≤ 900

• Conclusion: 100 ≤MaxClique(G) ≤ 550

• Quality: Not a 2-approximation!

Lower Bound: There is no good approximation to maximum clique (as-

suming P 6= NP ).



Set Cover

An instance (X,F) of the set-covering problem consists of a finite set

X and a family F of subsets of X , such that every element of X belongs

to at least one subset in F :

X =
⋃
S∈F

S .

We say that a subset S ∈ F covers its elements. The problem is to

find a minimum-size subset C ⊆ F whose members cover all of X :

X =
⋃
S∈C

S



Greedy Algorithm

Greedy-Set-Cover(X,F)
1 U ← X

2 C ← ∅
3 while U 6= ∅
4 do select an S ∈ F that maximizes |S ∩ U |
5 U ← U − S
6 C ← C ∪ {S}
7 return C

Claim: If the optimal set cover has k elements, then C has at most

k log n elements.



Proof

Claim: If the optimal set cover has k sets, then C has at most k log n

sets.

Proof:

• Optimal set cover has k sets.

• One of the sets must therefore cover at least n/k of the elements.

• First greedy step must therefore choose a set that covers at least n/k

of the elements.

• After first greedy step, the number of uncovered elements is at most

n− n/k = n(1− 1/k) .



Proof continued

Iterate argument

• On remaining uncovered elements, one set in optimal must cover at least

a 1/k fraction of the remaining elements.

• So after two steps, the number of uncovered elements is at most

n

1− 1

k

2

So after j iterations, the number of uncovered elements is at most

n

1− 1

k

j ≤ ne−j/k

When j = k lnn , the numer of uncovered elements is at most

ne−j/k = ne−k lnn/k = ne− lnn = n/n = 1

.

Therefore, the algorithm stops after choosing at most k lnn sets (without

knowing k .


