
Disjoint Sets

• Set of items - X .

• Maintain disjoint sets S1, . . . , Sk ; i.e. Si ∩ Sj = ∅ ∀i 6= j

• Operations:

– MakeSet( x ) - create a one-element set with x

– Find-Set( x ) - return the “name” of the set containing x

– Union( x , y ) - merge the set containing x and the set containing

y into one set.

Representation

• Represent set as a rooted tree, with name being root

• Time per operation is proportional to height of tree.

• Two good heuristics

– Union by Rank - make shallow tree a child of root of big tree

– Path Compression - every time you touch a node, make it a child of

root

• Union by Rank gives log V time per operation

• Union by Rank and path compression give better performance.



Disjoint Set Code

Make-Set(x)

1 p[x]← x

2 rank [x]← 0

Union(x, y)

1 Link(Find-Set(x),Find-Set(y))

Link(x, y)

1 if rank [x] > rank [y]

2 then p[y]← x

3 else p[x]← y

4 if rank [x] = rank [y]

5 then rank [y]← rank [y] + 1

Find-Set(x)

1 if x 6= p[x]

2 then p[x]← Find-Set(p[x])

3 return p[x]



Ackerman’s Function

Ak(j) =


j + 1 if k = 0

A
(j+1)
k−1 (j) if k ≥ 1

α(n) = min{k : Ak(1) ≥ n}

A0(j) = j + 1

A1(j) = A
(j+1)
0 (j)

= 2j + 1

A2(j) = A
(j+1)
1 (j)

= 2(2(· · · (2j + 1) · · ·) + 1) + 1

= 2j+1(j + 1)− 1



Ackerman

A3(1) = A
(2)
2 (1)

= A2(A2(1))

= A2(7)

= 28 · 8− 1

= 211 − 1

= 2047

A4(1) = A
(2)
3 (1)

= A3(A3(1))

= A3(2047)

= A
(2048)
2 (2047)

� A2(2047)

= 22048 · 2048− 1

> 22048

= (24)512

= 16512

� 1080 ,



Summary

• Amortized time per operation is α(V ) .

• Can think of it as lg∗ V , which is slightly bigger.


