Disjoint Sets

- Set of items - X.
- Maintain disjoint sets S_{1}, \ldots, S_{k}; i.e. $S_{i} \cap S_{j}=\emptyset \forall i \neq j$
- Operations:
- MakeSet (x) - create a one-element set with x
- Find-Set (x) - return the "name" of the set containing x
- Union(x, y) - merge the set containing x and the set containing y into one set.

Representation

- Represent set as a rooted tree, with name being root
- Time per operation is proportional to height of tree.
- Two good heuristics
- Union by Rank - make shallow tree a child of root of big tree
- Path Compression - every time you touch a node, make it a child of root
- Union by Rank gives $\log V$ time per operation
- Union by Rank and path compression give better performance.

Disjoint Set Code

```
Make-Set \((x)\)
\(1 \quad p[x] \leftarrow x\)
\(2 \operatorname{rank}[x] \leftarrow 0\)
Union \((x, y)\)
1 Link(Find-Set \((x)\), \(\operatorname{Find}-\operatorname{Set}(y))\)
\(\operatorname{Link}(x, y)\)
1 if \(\operatorname{rank}[x]>\operatorname{rank}[y]\)
\(2 \quad\) then \(p[y] \leftarrow x\)
\(3 \quad\) else \(p[x] \leftarrow y\)
\(4 \quad\) if \(\operatorname{rank}[x]=\operatorname{rank}[y]\)
\(5 \quad\) then \(\operatorname{rank}[y] \leftarrow \operatorname{rank}[y]+1\)
```

Find-Set (x)
1 if $x \neq p[x]$
$2 \quad$ then $p[x] \leftarrow \operatorname{Find-Set}(p[x])$
3 return $p[x]$

Ackerman's Function

$$
A_{k}(j)=\left\{\begin{array}{r}
j+1 \text { if } k=0 \\
A_{k-1}^{(j+1)}(j) \text { if } k \geq 1
\end{array}\right.
$$

$$
\alpha(n)=\min \left\{k: A_{k}(1) \geq n\right\}
$$

$$
\begin{aligned}
A_{0}(j) & =j+1 \\
A_{1}(j) & =A_{0}^{(j+1)}(j) \\
& =2 j+1 \\
A_{2}(j) & =A_{1}^{(j+1)}(j) \\
& =2(2(\cdots(2 j+1) \cdots)+1)+1 \\
& =2^{j+1}(j+1)-1
\end{aligned}
$$

Ackerman

$$
\begin{aligned}
& A_{3}(1)=A_{2}^{(2)}(1) \\
&=A_{2}\left(A_{2}(1)\right) \\
&=A_{2}(7) \\
&=2^{8} \cdot 8-1 \\
&=2^{11}-1 \\
&=2047 \\
& \\
& A_{4}(1)= A_{3}^{(2)}(1) \\
&=A_{3}\left(A_{3}(1)\right) \\
&=A_{3}(2047) \\
&=A_{2}^{(2048)}(2047) \\
&> A_{2}(2047) \\
&=2^{2048} \cdot 2048-1 \\
&>2^{2048} \\
&=\left(2^{4}\right)^{512} \\
&=16^{512} \\
& \gg 10^{80}
\end{aligned}
$$

Summary

- Amortized time per operation is $\alpha(V)$.
- Can think of it as $\lg ^{*} V$, which is slightly bigger.

