Selection

$\operatorname{Select}(A, i, n)-G i v e n$ a set of n numbers A, find the i th smallest.

Example

$$
\begin{array}{lllllllll}
3 & 18 & 1 & 8 & 4 & 47 & 45 & 10 & 23
\end{array}
$$

- $i=1$ - 1 minimum
- $i=9-47$ maximum
- $i=5-10$ median
- $i=7-\mathbf{2 3}$

What is a straightforward algorithm for Selection?

Selection

Select(A,i,n) - Given a set of n numbers A, find the i th smallest.

Example

$$
\begin{array}{lllllllll}
3 & 18 & 1 & 8 & 4 & 47 & 45 & 10 & 23
\end{array}
$$

- $i=1$ - 1 minimum
- $i=9-47$ maximum
- $i=5-10$ median
- $i=7-\mathbf{2 3}$

What is a straightforward algorithm for Selection?

- Sort the numbers and return $A[i]$.
- $O(n \log n)$ time.

Selection

Question: Is selection (median) harder than sorting? Is it necessary to sort to find the median?

Selection

Question: Is selection (median) harder than sorting? Is it necessary to sort to find the median?

Answer: No. We can find the median in $O(n)$ time.

A recursive strategy

- Pick an element to be the pivot p.
- Split the items into 2 sets
$-L$ - the set of items less than or equal to the pivot
$-H$ - the set of items greater than the pivot.
- Recurse on the appropriate set.

Deterministic Selection

```
Select(A,i,n)
1 if (n=1)
2 then return A[1]
3 p=MEDiAN}(A
4
5
6 L}={x\inA:x\leqp
    H={x\inA:x>p}
7 if i\leq|LL
8 then Select(L,i,|L|)
9 else SElect(H,i-|L|, |H|)
```


Analysis

- Let $M(n)$ be the time to find the median
- Let $T(n)$ be the time for selection
- Splitting the items into L and H takes $O(n)$ time.

$$
T(n)=T(n / 2)+M(n)+O(n) .
$$

- If $M(n)=O(n)$, then $T(n)=O(n)$
- But why should $M(n)=O(n)$, and isn't the reasoning circular?

Modified Goal

New Goal: Suppose that, in $O(n)$ time, we find a number "close" to the median, then what happens.

- Question 1: What if, in $O(n)$ time, we found a number in the middle half?
- Question 2: What if we used our selection algorithm recursively to help find a number in the middle half?

Modified Goal

New Goal: Suppose that, in $O(n)$ time, we find a number "close" to the median, then what happens.

- Question 1: What if, in $O(n)$ time, we found a number in the middle half?
- Question 2: What if we used our selection algorithm recursively to help find a number in the middle half?

Answer 1: If we found a number in the middle half, we would have the recurrence

$$
T(n) \leq T(3 n / 4)+O(n)
$$

which by the master method solves to $O(n)$.

Deterministic Selection (2)

Select(A,i,n)
1 if ($n=1$)
2 then return A
3 Split the items into $\lfloor n / 5\rfloor$ groups 5 (and one more group). Call these groups $G_{1}, G_{2}, \ldots, G_{\lfloor n / 5\rfloor}$
4 Find the median m_{i} of each G_{i}
5 Recursively compute the median of medians,

$$
\mathbf{p}=\operatorname{SeLEct}\left(\left\{m_{1}, \ldots, m_{\lfloor n / 5\rfloor}\right\},\lfloor n / 10\rfloor,\lfloor n / 5\rfloor\right)
$$

$6 \quad L=\{x \in A: x \leq p\}$
$H=\{x \in A: x>p\}$
7 if $i \leq|L|$
8 then $\operatorname{Select}(L, i,|L|)$
$9 \quad$ else $\operatorname{Select}(H, i-|L|,|H|)$

Proof

Correctness Need to prove that lines 3-6 return an item in the middle half.

Running time

$$
T(n) \leq T(3 n / 4)+T(n / 5)+O(n)
$$

