
Dynamic Programming

We’d like to have “generic” algorithmic paradigms for solving problems

Example: Divide and conquer

• Break problem into independent subproblems

• Recursively solve subproblems (subproblems are smaller instances of

main problem)

• Combine solutions

Examples:

• Mergesort,

• Quicksort,

• Strassen’s algorithm

• . . .

Dynamic Programming: Appropriate when you have recursive subprob-

lems that are not independent



Example: Making Change

Problem: A country has coins with denominations

1 = d1 < d2 < · · · < dk.

You want to make change for n cents, using the smallest number of coins.

Example: U.S. coins

d1 = 1 d2 = 5 d3 = 10 d4 = 25

Change for 37 cents – 1 quarter, 1 dime, 2 pennies.

What is the algorithm?



Change in another system

Suppose

d1 = 1 d2 = 4 d3 = 5 d4 = 10

• Change for 7 cents – 5,1,1

• Change for 8 cents – 4,4

What can we do?



Change in another system

Suppose

d1 = 1 d2 = 4 d3 = 5 d4 = 10

• Change for 7 cents – 5,1,1

• Change for 8 cents – 4,4

What can we do?

The answer is counterintuitive. To make change for n cents, we are going

to figure out how to make change for every value x < n first. We then build

up the solution out of the solution for smaller values.



Solution

We will only concentrate on computing the number of coins. We will

later recreate the solution.

• Let C[p] be the minimum number of coins needed to make change for

p cents.

• Let x be the value of the first coin used in the optimal solution.

• Then C[p] = 1 + C[p− x] .

Problem: We don’t know x.



Solution

We will only concentrate on computing the number of coins. We will

later recreate the solution.

• Let C[p] be the minimum number of coins needed to make change for

p cents.

• Let x be the value of the first coin used in the optimal solution.

• Then C[p] = 1 + C[p− x] .

Problem: We don’t know x.

Answer: We will try all possible x and take the minimum.

C[p] =

 mini:di≤p{C[p− di] + 1} if p > 0

0 if p = 0



Example: penny, nickel, dime

C[p] =

 mini:di≤p{C[p− di] + 1} if p > 0

0 if p = 0

Change(p)

1 if (p < 0)

2 then return ∞
3 elseif (p = 0)

4 then return 0

5 else

6 return 1 + min{Change(p− 1),Change(p− 5),Change(p− 10)}

What is the running time? (don’t do analysis here)



Dynamic Programming Algorithm

DP-Change(n)

1 C[< 0] =∞
2 C[0] = 0

3 for p = 1 to n

4 do min =∞
5 for i = 1 to k

6 do if (p ≥ di)

7 then if (C[p− di]) + 1 < min)

8 then min = C[p− di] + 1

9 coin = i

10

11 C[p] = min

12 S[p] = coin

Running Time: O(nk)



Dynamic Programming

Used when:

• Optimal substructure - the optimal solution to your problem is com-

posed of optimal solutions to subproblems (each of which is a smaller

instance of the original problem)

• Overlapping subproblems

Methodology

• Characterize structure of optimal solution

• Recursively define value of optimal solution

• Compute in a bottom-up manner



Example: Rod Cutting

Problem: Given a rod of length n inches and a table of prices pi for

i = 1, 2, . . . , n, determine the maximum revenue rn obtainable by cutting up

the rod and selling the pieces.
length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

How can we cut a rod of length 4?



Optimal Substructure

Suppose that we know that optimal solution makes the first cut to be

length k, then the optimal solution consists of an optimal solution to the

remaining piece of length n− k, plus the first piece of length k

Suppose not. Then we are saying that the optimal solution consists of

some way to cut the piece of length n−k that is not optimal, plus the piece

of length k. Let pk be the profit from the piece of length k, and let y be

profit from the non-optimal solution to the piece of length n − k. Then

we are receiving a total profit of y + pk. Now suppose that instead of the

proposed solution to the piece of length k, we used an optimal solution

to the piece of length k instead. Let y′ be the profit associated with the

optimal solution to the piece of length n− k, and since it is optimal y′ > y.

We could then put this together with the piece of length k and obtain a

solution of profit y′ + k > y + k, contradicting the claim that the original

solution was optimal.



Recursive Implementation

Recurrence

rn = max
1≤i≤n

(pi + rn−i) . (1)

Code

Cut−Rod(p, n)

1 if n == 0

2 then return 0

3 q ← −∞
4 for i← 1 to n

5 do q ← max(q, p[i] +Cut-Rod(p, n− i))

6 return q

What is the running time?



DP solution

Bottom− Up− Cut−Rod(p, n)

1 let r[0 . . n] be a new array

2 r[0]← 0

3 for j ← 1 to n

4 do q ← −∞
5 for i← 1 to j

6 do q ← max(q, p[i] + r[j − i])

7 r[j]← q

8 return r[n]

What is the running time?


