Greedy Algorithms

Informal Definition A greedy algorithm makes its next step based only on the current "state" and "simple" calculations on the input.

- "easy" to design
- not always correct
- challenge is to identify when greedy is the correct solution

Examples

- Rod cutting is not greedy. e.g. profit = (5, 10, 11, 15)
- Matrix Chain is not greedy.
- Change with U.S. coins is greedy
- Shortest paths with non-negative edge lengths is greedy, but not in the obvious way.

Greedy

Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods (s_i, f_i) are:

(1,4), (3,5), (0,6), (5,7), (3,8), (5,9), (6,10), (8,11), (8,12), (2,13), (12,14)Which ones should we schedule?

Greedy

Consider a set of requests for a room. Only one person can reserve the room at a time, and you want to allow the maximum number of requests. The requests for periods (s_i, f_i) are:

(1,4), (3,5), (0,6), (5,7), (3,8), (5,9), (6,10), (8,11), (8,12), (2,13), (12,14)Which ones should we schedule?

Code

- 1 Sort by finishing time, renumber with 1 having earliest finishing time

Proving a Greedy Algorithm is Optimal

Two components:

- 1. Optimal substructure
- 2. Greedy Choice Property: There exists an optimal solution that is consistent with the greedy choice made in the first step of the algorithm.

Optimal Substructure

 \bullet Let $\mathit{c}[i,j]$ be the number of activities scheduled from time i to time j

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{a_k \in S_{ij}} \{ c[i,s_k] + c[f_k,j] + 1 \} & \text{if } S_{ij} \neq \emptyset \end{cases}$$
(1)

Greedy Choice

Greedy Choice Property

- 1. Let S_k be a nonempty subproblem containing the set of activities that finish after activity a_k .
- **2.** Let a_m be an activity in S_k with the earliest finish time.
- 3. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Proof

- Let A_k be a maximum-size subset of mutually compatible activities in S_k ,
- let a_j be the activity in A_k with the earliest finish time.
- If $a_j = a_m$, we are done, since we have shown that a_m is in some maximumsize subset of mutually compatible activities of S_k .
- If $a_j \neq a_m$, let the set $A'_k = A_k \{a_j\} \cup \{a_m\}$
- The activities in A'_k are disjoint, because
 - the activities in A_k are disjoint,
 - $-a_j$ is the first activity in A_k to finish,
 - $-f_m \leq f_j$.
- Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

Procedure for Designing a Greedy Algorithm

- 1. Identify optimal substructure
- 2. Cast the problem as a greedy algorithm with the greedy choice property
- 3. Write a simple iterative algorithm

Robbery

- \bullet I want to rob a house and I have a knapsack which holds B pounds of stuff
- I want to fill the knapsack with the most profitable items

item	1	2	3
weight	10	20	30
value	60	100	120
value/weight	6	5	4

Two variants

- integral knapsack: Take an item or leave it
- fractional knapsack: Can take a fraction of an item (infinitely divisible)

Fractional vs. Integral Knapsack

- Both fractional and integral knapsack have optimal substructure.
- Only fractional knapsack has the greedy choice property.

Fractional Knapsack

Greedy Choice Property: Let j be the item with maximum v_i/w_i . Then there exists an optimal solution in which you take as much of item j as possible.

\mathbf{Proof}

- Suppose fpoc, that there exists an optimal solution in you didn't take as much of item j as possible.
- If the knapsack is not full, add some more of item j, and you have a higher value solution. Contradiction
- We thus assume the knapsack is full.
- There must exist some item $k \neq j$ with $\frac{v_k}{w_k} < \frac{v_j}{w_j}$ that is in the knapsack.
- We also must have that not all of j is in the knapsack.
- We can therefore take a piece of k, with ϵ weight, out of the knapsack, and put a piece of j with ϵ weight in.
- This increases the knapsack's value by

$$\epsilon \frac{v_j}{w_j} - \epsilon \frac{v_k}{w_k} = \epsilon \left(\frac{v_j}{w_j} - \frac{v_k}{w_k} \right) > 0$$

Contradition to the original solution being optimal.

Algorithm

- 1. Sort items by v_j/w_j , renumber.
- **2.** For i = 1 to n
 - Add as much of item i as possible

Question Why does this fail for integer knapsack?

Dynamic Programming Algorithm

- Let A[x, W] be the maximum value obtainable from items $1, \ldots, x$ using at most W weight
- To compute A[x, W], either
 - 1. item x is in the best solution
 - 2. item x is not.

Dynamic Programming Algorithm

- Let A[x, W] be the maximum value obtainable from items $1, \ldots, x$ using at most W weight
- To compute A[x, W], either
 - 1. item x is in the best solution include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most $W w_x$.
 - 2. item x is not then just use the best solution from $1, \ldots, x 1$ that has weight at most W.

Dynamic Programming Algorithm

- Let A[x, W] be the maximum value obtainable from items $1, \ldots, x$ using at most W weight
- To compute A[x, W], either

•

- 1. item x is in the best solution include x, along with the best solution from $1, \ldots, x-1$ that, along with x has weight at most W
- 2. item x is not then just use the best solution from $1, \ldots, x-1$ that has weight at most W.

$$A[x, W] = \max\{A[x - 1, W - w_i] + v_i, A[x - 1, W]\}$$