
One Minute Review of Basic Data Structures

Dictionaries are ordered sets with

• insert

• delete

• member

• min

• max

• predecessor

• successor

These can be implemented by many data structures, including

• unordered arrays

• ordered arrays

• linked lists

• balanced binary trees

– red-black trees

– b-trees

– 2-3 trees

– . . .



Implementations

Dictionaries are ordered sets with

• insert

• delete

• member

• min

• max

• predecessor

• successor

• Balanced binary trees support all dictionary operations in O(log n) time.

• Arrays and lists support some operations in O(n) and some in O(1)

depending on implementation.

• Hash tables can support insert, delete and member in expected O(1)

time.



Priority Queue

We want to design a data structure that supports the following opera-

tions:

• Insert

• Max

• ExtractMax

• IncreaseKey

Balance binary trees can support all of these in O(lg n) time, but we

would like something cleaner and simpler.



Heaps

Heap is a binary tree that is

• filled in top down, left-to-right

• value of parent ≥ value of child



Heap Representation

• Number nodes from 1

• leftchild(i) = 2i

• rightchild(i) = 2i + 1

• parent(i) = bi/2c



Heap Operations

Heap-Maximum(A)

1 return A[1]

Heap-Extract-Max(A)

1 if A.heap-size < 1

2 error “heap underflow”

3 max = A[1]

4 A[1] = A[A.heap-size]

5 A.heap-size = A.heap-size − 1

6 Max-Heapify(A, 1)

7 return max



Heap Operations

Heap-Increase-Key(A, i, key)

1 if key < A[i]

2 error “new key is smaller than current key”

3 A[i] = key

4 while i > 1 and A[Parent(i)] < A[i]

5 exchange A[i] with A[Parent(i)]

6 i = Parent(i)

Max-Heap-Insert(A, key)

1 A.heap-size = A.heap-size + 1

2 A[A.heap-size] = −∞
3 Heap-Increase-Key(A,A.heap-size, key)



MaxHeapify

Max-Heapify(A, i)

1 l = Left(i)

2 r = Right(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else largest = i

6 if r ≤ A.heap-size and A[r] > A[largest ]

7 largest = r

8 if largest 6= i

9 exchange A[i] with A[largest ]

10 Max-Heapify(A, largest)



First (correct) attempt at HeapSort

• input is in B

• heap and output in A

Heapsort(A)

1 for i = 1 to n

2 Max-Heap-Insert(B[i])

3 for i = A.length downto 2

4 exchange A[1] with A[i]

5 A.heap-size = A.heap-size − 1

6 Max-Heapify(A, 1)

Analysis

• 2 sequential loops each O(n) iterations

• heap operations take O(lg n) time

• total is O(n lg n)



Improvements?

• As we will see, n lg n is actually a lower bound that we can’t beat

• Consider just the first loop, can we do it quicker?

• We are doing n heap inserts, BUT, we are doing them without any

intervening operations, so it might be possible to do the sequence faster.



HeapSort

• input starts unsorted in A

• heap and output in A

Heapsort(A)

1 Build-Max-Heap(A)

2 for i = A.length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size − 1

5 Max-Heapify(A, 1)

Build-Max-Heap(A)

1 A.heap-size = A.length

2 for i = bA.length/2c downto 1

3 Max-Heapify(A, i)



General Rules for Loop Invariant Proofs

We use loop invariants to help us understand why an algorithm is correct.

We must show three things about a loop invariant:

Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true

before the next iteration.

Termination: When the loop terminates, the invariant gives us a useful

property that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every

iteration of the loop. Note the similarity to mathematical induction, where

to prove that a property holds, you prove a base case and an inductive step.

Here, showing that the invariant holds before the first iteration is like the

base case, and showing that the invariant holds from iteration to iteration

is like the inductive step.

The third property is perhaps the most important one, since we are using

the loop invariant to show correctness. It also differs from the usual use

of mathematical induction, in which the inductive step is used infinitely;

here, we stop the “induction” when the loop terminates.



HeapSort loop invariant

Build−Max−Heap(A)

1 heap-size[A] = length[A]

2 for i = blength[A]/2c downto 1

3 Max-Heapify(A, i)

To show why Build-Max-Heap works correctly, we use the following loop

invariant:

At the start of each iteration of the for loop of lines 2– 3, each node

i + 1, i + 2, . . . , n is the root of a max-heap.



Loop Invariant Proof

At the start of each iteration of the for loop of lines 2– 3, each node

i + 1, i + 2, . . . , n is the root of a max-heap.

We need to show that this invariant is true prior to the first loop itera-

tion, that each iteration of the loop maintains the invariant, and that the

invariant provides a useful property to show correctness when the loop

terminates.

Initialization: Prior to the first iteration of the loop, i = bn/2c. Each node

bn/2c+1, bn/2c+2, . . . , n is a leaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, ob-

serve that the children of node i are numbered higher than i. By the

loop invariant, therefore, they are both roots of max-heaps. This is

precisely the condition required for the call Max-Heapify(A, i) to make

node i a max-heap root. Moreover, the Max-Heapify call preserves the

property that nodes i + 1, i + 2, . . . , n are all roots of max-heaps. Decre-

menting i in the for loop update reestablishes the loop invariant for the

next iteration.

Termination: At termination, i = 0. By the loop invariant, each node

1, 2, . . . , n is the root of a max-heap. In particular, node 1 is.


