Analysis of Algorithms

Homework 2

PROBLEM 1

Argue the correctness of HEAP-InCREASE-KEY using the following loop invariant: at the start of each iteration of the while loop of lines $4-6$, the subarray $A[1 \ldots$ A. heap-size $]$ satisfies the maxheap property, except that there may be one violation: $A[i]$ may be larger than $A[\operatorname{PARENT}(i)]$.

The pseudocode for HEAP-InCREASE-KEY is reproduced for your convenience:
Heap-Increase-Key $(A, i, k e y)$:
1 if key < A [i]
2 error "new key is smaller than current key"
$3 A[i]=k e y$
$4 \quad$ while $i>1$ and $A[\operatorname{PaRENT}(i)]<A[i]$
5 exchange $A[i]$ with $A[\operatorname{ParEnt}(i)]$
$6 \quad i=\operatorname{PARENT}(i)$

You may assume that the subarray $A[1 \ldots$ A.heap-size $]$ satisfies the max-heap property at the time Heap-Increase-Key is called.

PROBLEM 2

(a) Give an $O(n \lg k)$-time algorithm to merge k sorted lists into one sorted list, when n is the total number of elements in all the input lists.
(b) Write a k-way Merge Sort algorithm to using the procedure in (a). What is the running time as a function of n and k ? What is the best value of k to use?

PROBLEM 3

In the deterministic selection algorithm, the input elements are divided into groups of 5. Will the algorithm work in linear time if they are divided into:
(a) groups of 7?
(b) groups of 3?

For each case, provide the worst-case running time.

Analysis of Algorithms

Homework 2

PROBLEM 4

Does the following pseudocode produce a uniform random permutation?
(a) $\operatorname{ShuFFLE}(A)$:
$1 \quad$ for $i=1$ to n
2
$\operatorname{swap} A[i]$ with $A[\operatorname{RANDOM}(1, n)]$
(b) $\operatorname{ShuFFLE}(A)$:

1 New array $B[1 \ldots n]$
2 offset $=\operatorname{RANDOM}(1, n)$
$3 \quad$ for $i=1$ to n
$4 \quad$ dest $=i+$ offset
$5 \quad$ if dest $>n$
6 7
8 return B

For (b) show that each element $A[i]$ has a $1 / n$ probability of getting assigned to any particular position in B.

PROBLEM 5

For n distinct elements x_{1}, \ldots, x_{n} with positive weights w_{1}, \ldots, w_{n} such that $\sum_{i=1}^{n} w_{i}=1$, the weighted median is the element x_{k} satisfying the following:

$$
\sum_{x_{i}<x_{k}} w_{i}<\frac{1}{2} \text { and } \sum_{x_{i}>x_{k}} w_{i} \leq \frac{1}{2}
$$

For example, if the elements are $\langle 0.1,0.35,0.05,0.1,0.15,0.05,0.2\rangle$ and each element equals its weight, the median is 0.1 , but the weighted median is 0.2 .
(a) Argue that the median of x_{1}, \ldots, x_{n} is the weighted median of the x_{i} with weights $w_{i}=1 / n$ for $i=1,2, \ldots n$.
(b) Show how to compute the weighted median of n elements in $O(n \lg n)$ worst-case time using sorting.
(c) Show how to compute the weighted median in $\Theta(n)$ worst-case time.

Analysis of Algorithms

Homework 2

PROBLEM 6

In this problem, we use indicator random variables to analyze the RANDOMIZED-SELECT procedure. As in the quicksort analysis, we assume that all elements are distinct, and we rename the elements of the input array A as $z_{1}, \ldots z_{n}$ where z_{i} is the i-th smallest element. (In other words, the call Randomized-Select $(A, 1, n, k)$ returns z_{k}.) For $1 \leq i<j \leq n$, the indicator random variable $X_{i j k}=\mathbf{1}\left\{z_{i}\right.$ is compared with z_{j} sometime during the execution of the algorithm to find $\left.z_{k}\right\}$
(a) Give an exact expression for $E\left[X_{i j k}\right]$. Hint: It depends on the values of i, j, k.
(b) Let X_{k} denote the total number of comparisons between elements of array A when finding z_{k}. Show that

$$
E\left[X_{k}\right] \leq 2\left(\sum_{i=1}^{k} \sum_{j=k}^{n} \frac{1}{j-i+1}+\sum_{j=k+1}^{n} \frac{j-k-1}{j-k+1}+\sum_{i=1}^{k-2} \frac{k-i-1}{k-i+1}\right)
$$

(c) Show that $E\left[X_{k}\right] \leq 4 n$.
(d) Conclude that, assuming all elements of A are distinct, RANDOMIZED-SELECT runs in expected time $O(n)$.

For your reference, the pseudocode for RaNDOMIZED-SELECT and RANDOMIZED-PARTITION:
Randomized-Select (A, p, r, i) :
$1 \quad$ if $p==r$
$2 \quad$ return $A[p]$
$3 q=\operatorname{RANDOMIZED-PARTITION}(A, p, r)$
$4 \quad k=q-p+1$
$5 \quad$ if $i==k \quad$ //the pivot value is the answer
return $A[q]$
$7 \quad$ else if $i<k$
8 return $\operatorname{Randomized}-\operatorname{Select}(A, p, q-1, i)$
9 else return Randomized-SELECT $(A, q+1, r, i-k)$

Randomized-Partition (A, p, r) : Partition (A, p, r) :
$1 \quad i=\operatorname{RANDOM}(p, r)$
2 exchange $A[r]$ with $A[i]$
$1 \quad x=A[r]$
$2 \quad i=p-1$
3 return $\operatorname{Partition}(A, p, r)$

