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PROBLEM 1 
Argue the correctness of HEAP-INCREASE-KEY using the following loop invariant: at the start of 
each iteration of the while loop of lines 4 – 6, the subarray 𝐴[1 … 𝐴. ℎ𝑒𝑎𝑝-𝑠𝑖𝑧𝑒] satisfies the max-
heap property, except that there may be one violation: 𝐴[𝑖] may be larger than 𝐴[PARENT(𝑖)]. 
 
The pseudocode for HEAP-INCREASE-KEY is reproduced for your convenience: 
HEAP-INCREASE-KEY(𝐴, 𝑖, 𝑘𝑒𝑦): 
1 if key < A[i] 
2  error “new key is smaller than current key” 
3 𝐴[𝑖] = 𝑘𝑒𝑦 
4 while 𝑖 > 1 and 𝐴[PARENT(𝑖)] < 𝐴[𝑖] 
5  exchange 𝐴[𝑖] with 𝐴[PARENT(𝑖)] 
6  𝑖 = PARENT(𝑖) 
 
You may assume that the subarray 𝐴[1 … 𝐴. ℎ𝑒𝑎𝑝-𝑠𝑖𝑧𝑒] satisfies the max-heap property at the 
time HEAP-INCREASE-KEY is called. 
 
PROBLEM 2 
(a) Give an 𝑂(𝑛 lg 𝑘)-time algorithm to merge 𝑘 sorted lists into one sorted list, when 𝑛 is the total 

number of elements in all the input lists.  
(b) Write a 𝑘-way Merge Sort algorithm to using the procedure in (a). What is the running time as 

a function of 𝑛 and 𝑘? What is the best value of 𝑘 to use? 
 
PROBLEM 3 
In the deterministic selection algorithm, the input elements are divided into groups of 5. Will the 
algorithm work in linear time if they are divided into: 
(a) groups of 7? 
(b) groups of 3? 
For each case, provide the worst-case running time. 
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PROBLEM 4 
Does the following pseudocode produce a uniform random permutation? 
(a) SHUFFLE(𝐴): 
1 for 𝑖 = 1 to 𝑛 
2  swap 𝐴[𝑖] with 𝐴[RANDOM(1, 𝑛)] 
 
(b) SHUFFLE(𝐴): 
1 New array 𝐵[1 … 𝑛]  
2 offset =  RANDOM(1, 𝑛) 
3 for 𝑖 = 1 to 𝑛 
4  𝑑𝑒𝑠𝑡 = 𝑖 + offset 
5  if 𝑑𝑒𝑠𝑡 > 𝑛 
6   𝑑𝑒𝑠𝑡 = 𝑑𝑒𝑠𝑡 − 𝑛 
7  𝐵[𝑑𝑒𝑠𝑡] = 𝐴[𝑖] 
8 return 𝐵 
 
For (b) show that each element 𝐴[𝑖] has a 1  𝑛⁄  probability of getting assigned to any particular 
position in 𝐵. 
 
PROBLEM 5 
For 𝑛 distinct elements 𝑥1, … , 𝑥𝑛 with positive weights 𝑤1, … , 𝑤𝑛  such that ∑ 𝑤𝑖

𝑛
𝑖=1 = 1 , the 

weighted median is the element 𝑥𝑘 satisfying the following: 

∑ 𝑤𝑖
𝑥𝑖<𝑥𝑘

< 1
2

 and ∑ 𝑤𝑖
𝑥𝑖>𝑥𝑘

≤ 1
2
 

For example, if the elements are ⟨0.1, 0.35, 0.05, 0.1, 0.15, 0.05, 0.2⟩ and each element equals its 
weight, the median is 0.1, but the weighted median is 0.2. 
(a) Argue that the median of 𝑥1, … , 𝑥𝑛 is the weighted median of the 𝑥𝑖 with weights 𝑤𝑖 = 1  𝑛⁄  

for 𝑖 = 1, 2, … 𝑛. 
(b) Show how to compute the weighted median of 𝑛 elements in 𝑂(𝑛 lg 𝑛) worst-case time using 

sorting. 
(c) Show how to compute the weighted median in Θ(𝑛) worst-case time. 
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PROBLEM 6 
In this problem, we use indicator random variables to analyze the RANDOMIZED-SELECT procedure. 
As in the quicksort analysis, we assume that all elements are distinct, and we rename the elements 
of the input array 𝐴 as 𝑧1, … 𝑧𝑛 where 𝑧𝑖 is the 𝑖-th smallest element. (In other words, the call 
RANDOMIZED-SELECT(𝐴, 1, 𝑛, 𝑘) returns 𝑧𝑘.) For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, the indicator random variable 

𝑋𝑖𝑗𝑘 = 𝟏{𝑧𝑖 is compared with 𝑧𝑗  sometime during the execution of the algorithm to find 𝑧𝑘} 
(a) Give an exact expression for 𝐸[𝑋𝑖𝑗𝑘]. Hint: It depends on the values of 𝑖, 𝑗, 𝑘. 
(b) Let 𝑋𝑘 denote the total number of comparisons between elements of array 𝐴 when finding 𝑧𝑘. 

Show that 

𝐸[𝑋𝑘] ≤ 2
(∑ ∑

1
𝑗 − 𝑖 + 1

𝑛

𝑗=𝑘

𝑘

𝑖=1
+ ∑

𝑗 − 𝑘 − 1
𝑗 − 𝑘 + 1

𝑛

𝑗=𝑘+1
+ ∑

𝑘 − 𝑖 − 1
𝑘 − 𝑖 + 1

𝑘−2

𝑖=1 )
 

(c) Show that 𝐸[𝑋𝑘] ≤ 4𝑛. 
(d) Conclude that, assuming all elements of 𝐴 are distinct, RANDOMIZED-SELECT runs in expected 

time 𝑂(𝑛). 
For your reference, the pseudocode for RANDOMIZED-SELECT and RANDOMIZED-PARTITION: 
RANDOMIZED-SELECT(𝐴, 𝑝, 𝑟, 𝑖): 
1 if 𝑝 == 𝑟 
2  return 𝐴[𝑝] 
3 𝑞 = RANDOMIZED-PARTITION(𝐴, 𝑝, 𝑟) 
4 𝑘 = 𝑞 − 𝑝 + 1 
5 if 𝑖 == 𝑘  //the pivot value is the answer 
6  return 𝐴[𝑞] 
7 else if 𝑖 < 𝑘 
8  return RANDOMIZED-SELECT(𝐴, 𝑝, 𝑞 − 1, 𝑖) 
9 else return RANDOMIZED-SELECT(𝐴, 𝑞 + 1, 𝑟, 𝑖 − 𝑘) 
 
RANDOMIZED-PARTITION(𝐴, 𝑝, 𝑟):  PARTITION(𝐴, 𝑝, 𝑟): 
1 𝑖 = RANDOM(𝑝, 𝑟)     1 𝑥 = 𝐴[𝑟] 
2 exchange 𝐴[𝑟] with 𝐴[𝑖]  2 𝑖 = 𝑝 − 1 
3 return PARTITION(𝐴, 𝑝, 𝑟)  3 for 𝑗 = 𝑝 to 𝑟 − 1 
      4  if 𝐴[𝑗] < 𝑥 
      5   𝑖 = 𝑖 + 1 
      6   exchange 𝐴[𝑖] with 𝐴[𝑗] 
      7 exchange 𝐴[𝑖 + 1] with 𝐴[𝑟] 
      8 return 𝑖 + 1 


