
Analysis of Algorithms
Homework 3

 1

General Instructions.
For a dynamic programming solution, be sure to

- Prove that an optimal substructure exists
- Say in words what your variables are computing
- Give a recurrence and a non-recursive pseudocode
- Analyze the running time

PROBLEM 1.
Consider a sorting problem in which we do not know the exact numbers. Instead, for each number,
we know an interval on the real line to which it belongs. We are given 𝑛 closed intervals of the
form [𝑎𝑖, 𝑏𝑖] where 𝑎𝑖 ≤ 𝑏𝑖. We wish to produce a permutation 〈𝑖1, … 𝑖𝑛⟩ of the intervals such that

for 𝑗 = 1,2, … , 𝑛 there exist 𝑐𝑗 ∈ [𝑎𝑖𝑗
, 𝑏𝑖𝑗] satisfying 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝑐𝑛 . Design a randomized

algorithm that does so in expected Θ(𝑛 lg 𝑛) time, but runs in Θ(𝑛) when all of the intervals overlap.
Hint: Start by quicksorting the left endpoints, but take advantage of overlapping intervals to make
an improvement. Your algorithm should not be explicitly checking if all the intervals overlap.

PROBLEM 2.
Consider modifying the PARTITION procedure by randomly picking three elements from the array
and partitioning about their median. As a function of 𝛼 such that 0 < 𝛼 < 1, approximate the
probability of getting at worst an 𝛼-to-(1 − 𝛼) split. Does this change improve the asymptotic
runtime of quicksort?

PROBLEM 3.
Give an efficient algorithm to find the longest palindrome that is a subsequence of a given input
string (e.g. given character you should return carac). Analyze the runtime of your algorithm.
(A palindrome is a string that reads the same forwards and backwards, such as racecar or tenet).

Analysis of Algorithms
Homework 3

 2

PROBLEM 4.
A certain string-processing language allows a programmer to break a string into two pieces.
Because this operation copies the string, it costs 𝑛 time units to break a string of 𝑛 characters into
two pieces. Suppose a programmer wants to break a string into many pieces. The order in which
the breaks occur can affect the total amount of time used.
For example: suppose that I want to break the string cliffsteinalgorithms to cliff, stein, algorithms.
If I break from left-to-right, the first break takes 20 time units and the second break takes 15, so it
takes 35 time units. If I break from right-to-left, similarly, it takes 30 time units.
Design an algorithm that, given a string and the indices of characters after which to break (in the
example, 〈cliffsteinalgorithms, 5, 10〉) determines the least-cost sequence of breaks.

PROBLEM 5.
The input to this problem is a sequence of 𝑛 points 𝑝1, … , 𝑝𝑛 in the Euclidean plane. You are to
find the shortest routes for the two taxis to service these requests in order. Let us be more specific:

- The two taxis start at the origin. If a taxi visits a point 𝑝𝑖 before 𝑝𝑗 then it must be the case
that 𝑖 < 𝑗 (stop and think about what this sentence means).

- Each point must be visited by at least one of the two taxis.
- The cost of a routing is just the total distance traveled by the first taxi plus the total distance

traveled by the second taxi.
Construct an efficient algorithm to compute the optimal service sequence for each taxi.

PROBLEM 6.
You are starting an electric car company. You build cars that can travel 𝑚 miles in between charges.
Your main objective is to make sure that people can drive from New York to San Francisco along
Route 80. You need to decide where to build charging stations. You have a set of potential
locations 𝑥1, … , 𝑥𝑛 and for each location 𝑖, you are given a distance 𝑑𝑖 and a price 𝑝𝑖. 𝑑𝑖 specifies
how many miles along Route 80 (from New York) each location is, and 𝑝𝑖 is the cost of building
a charging station at that location. You may assume that for every 𝑖, 𝑑𝑖+1 > 𝑑𝑖, and 𝑑𝑖+1 − 𝑑𝑖 ≤ 𝑚
so that if you build every station, a drive is guaranteed to be able to successfully travel from New
York to San Francisco.
Find an algorithm which finds a set of locations to open that guarantee that a driver will not run
out of electricity and which has minimum total cost.

