CSOR 4231: HW 5

Problem 1 Give an O(V+E)-time algorithm that, given a directed graph G =
(V, E), constructs another graph G’ = (V| E’) such that G and G’ have the same
strongly connected components, G’ has the same component graph as G, and
|E’| is as small as possible.

Problem 2 Consider a new divide-and-conquer algorithm for computing
minimum spanning trees, which goes as follows. Given a graph G = (V, E),
partition the set V' of vertices into two sets V; and V; such that |V;| and |Va|
differ by at most 1. Let E; be the set of edges that are incident only on
vertices in Vi, and let Fs be the set of edges that are incident only on vertices
in V5. Recursively solve a minimum-spanning-tree problem on each of the two
subgraphs G; = (V4, E1) and Go = (Va, Es). Finally, select the minimum-weight
edge in E that crosses the cut (V7,V2), and use this edge to unite the resulting
two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning
tree of G, or provide an example for which the algorithm fails.

Problem 3

a) Give a simple example of a connected graph such that the set of edges
{(u, v) such that there exists a cut (S,V — S) such that (u,v) is a light edge
crossing (S,V — S)} does not form a minimum spanning tree.

b) Show that a graph has a unique minimum spanning tree if, for every cut of
the graph, there is a unique light edge crossing the cut. Show that the converse
is not true by giving a counterexample.

Problem 4

Arbitrage is the use of discrepancies in currency exchange rates to transform
one unit of a currency into more than one unit of the same currency. For
example, suppose that 1 U.S. dollar buys 64 Indian rupees, 1 Indian rupee
buys 1.8 Japanese yen, and 1 Japanese yen buys 0.009 U.S. dollars. Then, by
converting currencies, a trader can start with 1 U.S. dollar and buy 64 x 1.8 x
0.009 = 1.0368 U.S. dollars, thus turning a profit of 3.68 percent.

Suppose that you are given n currencies ¢, co, . .., ¢, and an n X n table R of
exchange rates, such that one unit of currency ¢; buys R[i, j] units of currency c;.

1. Give an efficient algorithm to determine whether or not there exists a



sequence of currencies < ¢;,, ¢;,, ..., ¢, > such that
R[ih ’LQ] . R[ig, 23] cee R[ik—h ’Lk] . R[ik, 11] >1.
Analyze the running time of your algorithm.

2. Give an efficient algorithm to print out such a sequence if one exists.
Analyze the running time of your algorithm.

Problem 5.

Given a weighted, directed graph G = (V, E') with no negative-weight cycles,
let m be the maximum over all vertices v € V of the minimum number of edges in
a shortest path from the source s to v. (Here, the shortest path is by weight, not
the number of edges.) Suggest a simple change to the Bellman-Ford algorithm
that allows it to terminate in m + 1 passes, even if m is not known in advance.

Problem 6

Let G = (V, E) be a directed graph with weight function w, and let n = |V.
We define the mean weight of a cycle c =< ey, es,..., e > of edges in E to be

k
Zw(ei) .

Let p* = min{p(c) such that ¢ is a directed cycle in G}. We call a cycle ¢ for
which u(c) = p* a minimum mean-weight cycle. This problem investigates an
efficient algorithm for computing p*.

p(c) =

=

Assume without loss of generality that every vertex v € V' is reachable from
a source vertex s € V. Let d(s,v) be the weight of a shortest path from s to v,
and let dx (s, v) be the weight of a shortest path from s to v consisting of exactly
k edges. If there is no path from s to v with exactly k edges, then 0y (s, v) = oco.

1. Show that if u* = 0, then G contains no negative-weight cycles and
d(s,v) = min{dx(s,v) such that 0 < k < n — 1} for all vertices v € V.

2. Show that if u* = 0, then

max] On (s, UT)L : Zk(s, v)

for all vertices v € V. (Hint: Use both properties from part (a).)

such that 0 <k <mn—1}>0

3. Let ¢ be a 0-weight cycle, and let w and v be any two vertices on ¢. Suppose
that ©* = 0 and that the weight of the simple path from u to v along the
cycle is . Prove that §(s,v) = d(s,u) + z. (Hint: The weight of the
simple path from v to w along the cycle is —z.)



4. Show that if p* = 0, then on each minimum mean-weight cycle there exists
a vertex v such that
571(3’ U) — 5k(87 U)
n—k

max{ such that 0 < k<n-1}=0.

(Hint: Show how to extend a shortest path to any vertex on a minimum
mean-weight cycle along the cycle to make a shortest path to the next
vertex on the cycle.)

5. Show that if y* = 0, then the minimum value of

n(8,v) — 0k (s,v)
n—=k

)
max{ such that 0 < k <n -1},

taken over all vertices v € V, equals 0.

6. Show that if you add a constant ¢ to the weight of each edge of G, then p*
increases by t. Use this fact to show that u* equals the minimum value of

(s,v) — 0k (s,v)
n—=k

On
max{ such that 0 < k <n -1},

taken over all vertices v € V.

7. Give an O(V E)-time algorithm to compute g*.



