Problem 1 Give an $O(V+E)$-time algorithm that, given a directed graph $G=$ (V, E), constructs another graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that G and G^{\prime} have the same strongly connected components, G^{\prime} has the same component graph as G, and $\left|E^{\prime}\right|$ is as small as possible.

Problem 2 Consider a new divide-and-conquer algorithm for computing minimum spanning trees, which goes as follows. Given a graph $G=(V, E)$, partition the set V of vertices into two sets V_{1} and V_{2} such that $\left|V_{1}\right|$ and $\left|V_{2}\right|$ differ by at most 1 . Let E_{1} be the set of edges that are incident only on vertices in V_{1}, and let E_{2} be the set of edges that are incident only on vertices in V_{2}. Recursively solve a minimum-spanning-tree problem on each of the two subgraphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Finally, select the minimum-weight edge in E that crosses the cut $\left(V_{1}, V_{2}\right)$, and use this edge to unite the resulting two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning tree of G, or provide an example for which the algorithm fails.

Problem 3

a) Give a simple example of a connected graph such that the set of edges $\{(u, v)$ such that there exists a cut $(S, V-S)$ such that (u, v) is a light edge crossing $(S, V-S)\}$ does not form a minimum spanning tree.
b) Show that a graph has a unique minimum spanning tree if, for every cut of the graph, there is a unique light edge crossing the cut. Show that the converse is not true by giving a counterexample.

Problem 4

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 64 Indian rupees, 1 Indian rupee buys 1.8 Japanese yen, and 1 Japanese yen buys 0.009 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $64 \times 1.8 \times$ $0.009=1.0368$ U.S. dollars, thus turning a profit of 3.68 percent.

Suppose that you are given n currencies $c_{1}, c_{2}, \ldots, c_{n}$ and an $n \times n$ table R of exchange rates, such that one unit of currency c_{i} buys $R[i, j]$ units of currency c_{j}.

1. Give an efficient algorithm to determine whether or not there exists a
sequence of currencies $<c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{k}}>$ such that

$$
R\left[i_{1}, i_{2}\right] \cdot R\left[i_{2}, i_{3}\right] \cdots R\left[i_{k-1}, i_{k}\right] \cdot R\left[i_{k}, i_{1}\right]>1
$$

Analyze the running time of your algorithm.
2. Give an efficient algorithm to print out such a sequence if one exists. Analyze the running time of your algorithm.

Problem 5.

Given a weighted, directed graph $G=(V, E)$ with no negative-weight cycles, let m be the maximum over all vertices $v \in V$ of the minimum number of edges in a shortest path from the source s to v. (Here, the shortest path is by weight, not the number of edges.) Suggest a simple change to the Bellman-Ford algorithm that allows it to terminate in $m+1$ passes, even if m is not known in advance.

Problem 6

Let $G=(V, E)$ be a directed graph with weight function w, and let $n=|V|$. We define the mean weight of a cycle $c=<e_{1}, e_{2}, \ldots, e_{k}>$ of edges in E to be

$$
\mu(c)=\frac{1}{k} \sum_{i=1}^{k} w\left(e_{i}\right)
$$

Let $\mu^{*}=\min \{\mu(c)$ such that c is a directed cycle in $G\}$. We call a cycle c for which $\mu(c)=\mu^{*}$ a minimum mean-weight cycle. This problem investigates an efficient algorithm for computing μ^{*}.

Assume without loss of generality that every vertex $v \in V$ is reachable from a source vertex $s \in V$. Let $\delta(s, v)$ be the weight of a shortest path from s to v, and let $\delta_{k}(s, v)$ be the weight of a shortest path from s to v consisting of exactly k edges. If there is no path from s to v with exactly k edges, then $\delta_{k}(s, v)=\infty$.

1. Show that if $\mu^{*}=0$, then G contains no negative-weight cycles and $\delta(s, v)=\min \left\{\delta_{k}(s, v)\right.$ such that $\left.0 \leq k \leq n-1\right\}$ for all vertices $v \in V$.
2. Show that if $\mu^{*}=0$, then

$$
\max \left\{\frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k} \text { such that } 0 \leq k \leq n-1\right\} \geq 0
$$

for all vertices $v \in V$. (Hint: Use both properties from part (a).)
3. Let c be a 0 -weight cycle, and let u and v be any two vertices on c. Suppose that $\mu^{*}=0$ and that the weight of the simple path from u to v along the cycle is x. Prove that $\delta(s, v)=\delta(s, u)+x$. (Hint: The weight of the simple path from v to u along the cycle is $-x$.)
4. Show that if $\mu^{*}=0$, then on each minimum mean-weight cycle there exists a vertex v such that

$$
\max \left\{\frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k} \text { such that } 0 \leq k \leq n-1\right\}=0
$$

(Hint: Show how to extend a shortest path to any vertex on a minimum mean-weight cycle along the cycle to make a shortest path to the next vertex on the cycle.)
5. Show that if $\mu^{*}=0$, then the minimum value of

$$
\max \left\{\frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k} \text { such that } 0 \leq k \leq n-1\right\}
$$

taken over all vertices $v \in V$, equals 0 .
6. Show that if you add a constant t to the weight of each edge of G, then μ^{*} increases by t. Use this fact to show that μ^{*} equals the minimum value of

$$
\max \left\{\frac{\delta_{n}(s, v)-\delta_{k}(s, v)}{n-k} \text { such that } 0 \leq k \leq n-1\right\}
$$

taken over all vertices $v \in V$.
7. Give an $O(V E)$-time algorithm to compute μ^{*}.

