
CSOR 4231: HW 5

Problem 1 Give anO(V+E)-time algorithm that, given a directed graphG =
(V,E), constructs another graph G′ = (V,E′) such that G and G′ have the same
strongly connected components, G′ has the same component graph as G, and
|E′| is as small as possible.

Problem 2 Consider a new divide-and-conquer algorithm for computing
minimum spanning trees, which goes as follows. Given a graph G = (V,E),
partition the set V of vertices into two sets V1 and V2 such that |V1| and |V2|
differ by at most 1. Let E1 be the set of edges that are incident only on
vertices in V1, and let E2 be the set of edges that are incident only on vertices
in V2. Recursively solve a minimum-spanning-tree problem on each of the two
subgraphs G1 = (V1, E1) and G2 = (V2, E2). Finally, select the minimum-weight
edge in E that crosses the cut (V1, V2), and use this edge to unite the resulting
two minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum spanning
tree of G, or provide an example for which the algorithm fails.

Problem 3

a) Give a simple example of a connected graph such that the set of edges
{(u, v) such that there exists a cut (S, V − S) such that (u, v) is a light edge
crossing (S, V − S)} does not form a minimum spanning tree.

b) Show that a graph has a unique minimum spanning tree if, for every cut of
the graph, there is a unique light edge crossing the cut. Show that the converse
is not true by giving a counterexample.

Problem 4

Arbitrage is the use of discrepancies in currency exchange rates to transform
one unit of a currency into more than one unit of the same currency. For
example, suppose that 1 U.S. dollar buys 64 Indian rupees, 1 Indian rupee
buys 1.8 Japanese yen, and 1 Japanese yen buys 0.009 U.S. dollars. Then, by
converting currencies, a trader can start with 1 U.S. dollar and buy 64× 1.8×
0.009 = 1.0368 U.S. dollars, thus turning a profit of 3.68 percent.

Suppose that you are given n currencies c1, c2, . . . , cn and an n×n table R of
exchange rates, such that one unit of currency ci buys R[i, j] units of currency cj .

1. Give an efficient algorithm to determine whether or not there exists a
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sequence of currencies < ci1 , ci2 , . . . , cik > such that

R[i1, i2] ·R[i2, i3] · · ·R[ik−1, ik] ·R[ik, i1] > 1 .

Analyze the running time of your algorithm.

2. Give an efficient algorithm to print out such a sequence if one exists.
Analyze the running time of your algorithm.

Problem 5.

Given a weighted, directed graph G = (V,E) with no negative-weight cycles,
letm be the maximum over all vertices v ∈ V of the minimum number of edges in
a shortest path from the source s to v. (Here, the shortest path is by weight, not
the number of edges.) Suggest a simple change to the Bellman-Ford algorithm
that allows it to terminate in m+ 1 passes, even if m is not known in advance.

Problem 6

Let G = (V,E) be a directed graph with weight function w, and let n = |V |.
We define the mean weight of a cycle c =< e1, e2, . . . , ek > of edges in E to be

µ(c) =
1

k

k∑
i=1

w(ei) .

Let µ∗ = min{µ(c) such that c is a directed cycle in G}. We call a cycle c for
which µ(c) = µ∗ a minimum mean-weight cycle. This problem investigates an
efficient algorithm for computing µ∗.

Assume without loss of generality that every vertex v ∈ V is reachable from
a source vertex s ∈ V . Let δ(s, v) be the weight of a shortest path from s to v,
and let δk(s, v) be the weight of a shortest path from s to v consisting of exactly
k edges. If there is no path from s to v with exactly k edges, then δk(s, v) =∞.

1. Show that if µ∗ = 0, then G contains no negative-weight cycles and
δ(s, v) = min{δk(s, v) such that 0 ≤ k ≤ n− 1} for all vertices v ∈ V .

2. Show that if µ∗ = 0, then

max{δn(s, v)− δk(s, v)

n− k
such that 0 ≤ k ≤ n− 1} ≥ 0

for all vertices v ∈ V . (Hint: Use both properties from part (a).)

3. Let c be a 0-weight cycle, and let u and v be any two vertices on c. Suppose
that µ∗ = 0 and that the weight of the simple path from u to v along the
cycle is x. Prove that δ(s, v) = δ(s, u) + x. (Hint: The weight of the
simple path from v to u along the cycle is −x.)

2



4. Show that if µ∗ = 0, then on each minimum mean-weight cycle there exists
a vertex v such that

max{δn(s, v)− δk(s, v)

n− k
such that 0 ≤ k ≤ n− 1} = 0 .

(Hint: Show how to extend a shortest path to any vertex on a minimum
mean-weight cycle along the cycle to make a shortest path to the next
vertex on the cycle.)

5. Show that if µ∗ = 0, then the minimum value of

max{δn(s, v)− δk(s, v)

n− k
such that 0 ≤ k ≤ n− 1} ,

taken over all vertices v ∈ V , equals 0.

6. Show that if you add a constant t to the weight of each edge of G, then µ∗

increases by t. Use this fact to show that µ∗ equals the minimum value of

max{δn(s, v)− δk(s, v)

n− k
such that 0 ≤ k ≤ n− 1} ,

taken over all vertices v ∈ V .

7. Give an O(V E)-time algorithm to compute µ∗.
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