CSOR4231

Analysis of Algorithms

Algorithms are Everywhere

Examples

- Maps
- Fedex
- Biology
- Physics
- Computer Operating Systems
- Self-Driving Cars
- Determining if you should get a job/loan/school admission
- Regulating your heart
- Space Shuttle
- Machine Learning

Why is this the right time to study algorithms?

- Mathematical understanding
- fast computers
- ability to get algorithm implementations to users
- good interfaces

What do we study in this class

- Given a problem, we find the right algorithm
- We use math
- We prove that our work is right
- We keep an eye on practice/implementation, but our goal is to solve the clean well-defined problem.

What are the skills most people need

- Given a new problem, how do we design an algorithm
- Knowing what is efficient and what is not, to help you
- model problems
- use existing algorithms
- decide which algorithms to extend
- realize when a problem is too hard to solve quickly

First problem to consider: Matrix Multiplication

$$
\begin{gathered}
C=A \cdot B \\
{\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 6 \\
2 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
6 & 20 \\
5 & 18
\end{array}\right]}
\end{gathered}
$$

Algorithm for Matrix Multiplication

$$
\begin{gathered}
C=A \cdot B \\
{\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 6 \\
2 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
6 & 20 \\
5 & 18
\end{array}\right]}
\end{gathered}
$$

Write pseudocode
$1 / /$ input: A, an $n \times m$ matrix and B, an $m \times p$ matrix
2 // output: C, an $n \times p$ matrix
3 for $i=1$ to n
4
5
for $j=1$ to p
$C[i, j]=0$
for $k=1$ to m
$C[i, j]+=A[i, k] \cdot B[k, j]$

Analysis

$1 / /$ input: A, an $n \times m$ matrix and B, an $m \times p$ matrix
2 // output: C, an $n \times$ matrix
3 for $i=1$ to n
4
$5 \quad C[i, j]=0$
6
for $k=1$ to m
7

$$
C[i, j]+=A[i, k] \cdot B[k, j]
$$

Running time

- 3 nested loops
- $O(n m p)$ time
- if $n=m=p$, then $O\left(n^{3}\right)$ time
- Lower bound of $\Omega\left(n^{2}\right)$

Can we do better?

- We are implementing the standard definition efficiently, what else could we do?
- You have to do n^{3} operatation, each of n^{2} entries of C, involves adding up the result of n multipications.

Can we do better?

- We are implementing the standard definition efficiently, what else could we do?
- You have to do n^{3} operatation, each of n^{2} entries of C, involves adding up the result of n multipications.

Maybe divide and conquer can help

$$
\begin{align*}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & g \\
f & h
\end{array}\right]=\left[\begin{array}{ll}
r & s \\
t & u
\end{array}\right]} \\
& r=a e+b f \tag{1}\\
& s=a g+b h \tag{2}\\
& t=c e+d f \tag{3}\\
& u=c g+d h \tag{4}
\end{align*}
$$

Maybe divide and conquer can help

$$
\begin{gather*}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & g \\
f & h
\end{array}\right]=\left[\begin{array}{ll}
r & s \\
t & u
\end{array}\right]} \\
r
\end{gather*} \begin{aligned}
& =a e+b f \tag{5}\\
s & =a g+b h \tag{6}\\
t & =c e+d f \tag{7}\\
u & =c g+d h \tag{8}
\end{aligned}
$$

Multiply $2 n \times n$ matrices takes

- 8 multiplications of $n / 2 \times n / 2$ matrices
- 4 additions of $n / 2 \times n / 2$ matrices
- Adding two $n \times n$ matrices takes $O\left(n^{2}\right)$ time
- Adding matrices seems easier than multiplying them

Let's Analyze

Let $T(n)$ be the time to multiply $2 n$ by n matrices

$$
T(n)= \begin{cases}8 T(n / 2)+4(n / 2)^{2} & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

Let's Analyze

Let $T(n)$ be the time to multiply $2 n$ by n matrices

$$
T(n)= \begin{cases}8 T(n / 2)+4(n / 2)^{2} & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

As we will learn, this solves to $O\left(n^{3}\right)$.
But consider the following recurrence

$$
T(n)= \begin{cases}7 T(n / 2)+18(n / 2)^{2} & \text { if } n>1 \\ 1 & \text { if } n=1\end{cases}
$$

As we will learn, this solves to $O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81 . .}\right)$.
But can we multiply $2 n \times n$ matrices by doing 7 multiplications of $n / 2 \times n / 2$ matrices and 18 additions of $n / 2 \times n / 2$ matrices.

Strassen's Algorithm

To Compute

$$
\begin{align*}
r & =a e+b f \tag{9}\\
s & =a g+b h \tag{10}\\
t & =c e+d f \tag{11}\\
u & =c g+d h \tag{12}
\end{align*}
$$

Calculations

$$
\begin{aligned}
& P_{1}=a(g-h) \quad=a g-a h \\
& P_{2}=(a+b) h \quad=a h+b h \\
& P_{3}=(c+d) e \quad=c e+d e \\
& P_{4}=d(f-e) \quad=d f-d e \\
& t=P_{3}+P_{4} \\
& P_{5}=(a+d)(e+h)=a e+a h+d e+d h \\
& P_{6}=(b-d)(h+f)=-d h-d f+b h+b f \\
& r=P_{5}+P_{4}-P_{2}+P_{6} \\
& P_{7}=(a-c)(e+g)=a e+a g-c e-c g \\
& u=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

Course Logistics

Another Problem

Investing for someone who knows the Future: You are given the prices of a stock for each of the next n days. You can buy once and sell once and you want to maximize your profit.

Example | Day | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Price | 70 | 90 | 40 | 27 | 69 | 80 | 13 | 50 | 35 | 75 | 51 | 53 | 56 | 10 | 15 | 41 |

Questions:

- How long does the naive algorithm take?
- Can we improve this with divide and conquer?

