Basics of Algorithm Analysis

- We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).
- We work in the RAM model of computation. All "reasonable" operations take "1" unit of time. (e.g. +, *, -, /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

- Best case (seldom used)
- Average case (used if we understand the average)
- Worst case (used most often)

Example

- 1 input: A[n]

 2 for i = 1 to n

 3 if (A[i] == 7)

 4 for j = 1 to n

 5 for k = 1 to n

 6 Print "hello"
 - What is the worst case running time?
 - What is the best case running time?
 - What is the average case running time?

Example

- 1 input: A[n]

 2 for i = 1 to n

 3 if (A[i] == 7)

 4 for j = 1 to n

 5 for k = 1 to n

 6 Print "hello"
 - What is the worst case running time? $O(n^3)$
 - What is the best case running time? O(n)
 - What is the average case running time? What is an average array?

How do we measure the running time?

We measure as a function of n, and ignore low order terms.

- $5n^3 + n 6$ becomes n^3
- $8n \log n 60n$ becomes $n \log n$
- $2^n + 3n^4$ becomes 2^n

Asymptotic notation

big-O

 $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \} \ .$

Alternatively, we say

$$\begin{array}{l} f(n)=O(g(n)) \ \ \text{if there exist positive constants } c \ \text{and} \ n_0 \ \text{such that} \\ 0 \leq f(n) \leq cg(n) \ \text{for all} \ n \geq n_0 \} \end{array}$$

Informally, f(n) = O(g(n)) means that f(n) is asymptotically less than or equal to g(n).

big- Ω

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \} \ .$

Alternatively, we say

$$\begin{split} f(n) &= \Omega(g(n)) \ \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that} \\ & 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \rbrace \ . \end{split}$$

Informally, $f(n) = \Omega(g(n)$ means that f(n) is asymptotically greater than or equal to g(n).

big- Θ

$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

Informally, $f(n) = \Theta(g(n) \text{ means that } f(n) \text{ is asymptotically equal to } g(n)$.

INFORMAL summary

- f(n) = O(g(n)) roughly means $f(n) \le g(n)$
- $f(n) = \Omega(g(n))$ roughly means $f(n) \ge g(n)$
- $f(n) = \Theta(g(n))$ roughly means f(n) = g(n)
- f(n) = o(g(n)) roughly means f(n) < g(n)

•
$$f(n) = w(g(n))$$
 roughly means $f(n) > g(n)$

Big-O proofs

(turn on light)

- $\bullet \ 3n = O(n^2)$
- 2n+7 = O(n)
- $n^{\log n} = O(2^n)$

Use of big-O

2n + 7 = O(n) $2n + 7 = O(n^3)$ $2n + 7 = O(n^{4.5} \log n)$ $2n + 7 = O(2^n)$

Which of these do we care about?

Use of big-O

2n + 7 = O(n) $2n + 7 = O(n^3)$ $2n + 7 = O(n^{4.5} \log n)$ $2n + 7 = O(2^n)$

Which of these do we care about?

• Given a function f(n), we want to know the "smallest" g(n) such that f(n) = O(g(n)) and g(n) is "simple"

Simple Functions

- \bullet Given a function f(n) , we want to know the "smallest" g(n) such that $f(n)=O(g(n))~~{\rm and}~~g(n)~~{\rm is}$ "simple"
- Typical simple functions include (but are not limited to)
 - -1 $-\log \log n$ $-\log n$ $-\log^2 n$ -n $-n \log n$ $-n^2$ $-n^3$ -2^n -n!
- We use these to classify algorithms into classes

See chart for justification

Polynomial Time

An algorithm runs in polynomial time if, on an input of size n, its running time is $O(n^k)$ for some constant k.

 2^n is NOT polynomial. Let's try to prove that it is polynomial and see what goes wrong.

Proving Omega and Theta

 $f(n) = \Omega(g(n))$ if there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

 $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

<u>3 useful formulas</u>

Arithmetic series

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Geometric series

$$\sum_{i=0}^{\infty} a^{i} = \frac{1}{1-a} \quad \text{for } 0 < a < 1$$

Harmonic series

$$\sum_{i=1}^{n} \frac{1}{i} = \ln n + O(1) = \Theta(\ln n)$$

Arithmetic Series in PseudoCode

compared to

1 for
$$i = 1$$
 to n
2 for $j = 1$ to i
3 Jump up and down

Geometric Series

or

1 JUMP(n) 2 if n = 13 Jump up and down once 4 else 5 Jump up and down n times 6 JUMP($\lfloor n/2 \rfloor$)

A few facts about logs

- $\log_b a = \frac{\log_c a}{\log_c b}$ for any c > 1
- therefore $\ln n = O(\log n)$
- in general, the base of the logarithm in a big-O statement is not important

$$n + \frac{n}{2} + \frac{n}{3} + \frac{n}{4} + \frac{n}{5} + \dots + 1 = n\left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n}\right)$$
$$= O(n \log n)$$

Algorithmic Correctness

- Very important, but we won't typically prove correctness from first principles.
- We will use loop invariants
- We will use other problem specific methods

Divide and Conquer

- Divide a problem into pieces
- **Recursively** solve the pieces
- Combine the solutions to the subproblems

Strassen

- divide into 7 $n/2 \times n/2$ size problems
- solved recursive problems
- used 18 additions to combine the pieces

MergeSort

 $\begin{array}{ll} 1 & Merge-Sort(A,p,r) \\ 2 & \text{if } p < r \\ 3 & q = \lfloor (p+r)/2 \rfloor \\ 4 & \text{MERGE-SORT}(A,p,q) \\ 5 & \text{MERGE-SORT}(A,q+1,r) \\ 6 & \text{MERGE}(A,p,q,r) \end{array}$

Let ${\cal T}(n)$ be the running time of MergeSort on n items. Merge takes ${\cal O}(n)$ time.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}.$$

<u>**3 Recurrence Trees</u>**</u>

1.
$$T(n) = 2T(n/2) + n$$

2. $T(n) = 2T(n/2) + 1$
3. $T(n) = 2T(n/2) + n^2$

Master Theorem

Master Theorem for Recurrences Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the non-negative integers by the recurrence

$$T(n) = aT(n/b) + f(n) \ ,$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows.

- **1.** If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- **2. If** $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.