Internet Routing Example

Acme Routing Company wants to route traffic over the internet from San Fransisco to New York. It owns some wires that go between San Francisco, Houston, Chicago and New York. The table below describes how many kilobytes can be routed on each wire in a second. Figure out a set of routes that maximizes the amount of traffic that goes from San Francisco to New York.

CitiesMS.F. - Chicago3S.F. - Houston6Houston - Chicago2Chicago - New York7Houston - New York5

Maximum number of kbytes per second

One commodity, one source, one sink

Maximum Flows

- A flow network G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity.
- If $(u,v) \notin E$, we assume that c(u,v) = 0.
- \bullet We distinguish two vertices in a flow network: a source s and a sink t .

A flow in G is a real-valued function $f: V \times V \to R$ that satisfies the following two properties:

Capacity constraint: For all $u, v \in V$, we require $0 \le f(u, v) \le c(u, v)$. Flow conservation: For all $u \in V - \{s, t\}$, we require

$$\sum_{v \in V} f(v,u) = \sum_{v \in V} f(u,v)$$
 .

The value of a flow f is defined as

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) , \qquad (1)$$

Example

Solutions

Algorithm: Ford Fulkerson

Greedily send flow from source to sink.

```
Ford-Fulkerson-Method (G, s, t)
```

- 1 initialize flow f to 0
- 2 while there exists an augmenting path p

```
3 augment flow f along p
```

```
4 return f
```

For this to work, we need a notion of a residual graph

Residual Graph

The residual graph is the graph of edges on which it is possible to push flow from source to sink.

• The residual capacity of (u, v), is

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}.$$
(2)

• The residual graph G_f is the graph consisting of edges with positive residual capacity

Residual Network

(a)

12 v_3 v_1 1 5 11 19 t S \mathfrak{C} 9 3 4 12 v_2 v_4 11 (d)

(c)

Updating a Flow

- Send flow along the path defined by the residual graph.
- Amount: minimum of capacity of all residual edges in the augmenting path.
- If a residual edge is a graph edge, then add the flow.
- If a residual edge is a reverse edge, then subtract the flow.

<u>s - t</u> Cuts

- An s t cut satsfies
- $s \in S$, $t \in T$
- $S \cup T = V$, $S \cap T = \emptyset$

Capacity of a cut (only forward edges)

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

Flow crossing a cut (net flow)

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v) - \sum_{u \in T, v \in S} f(u,v)$$

Properties of cuts and flows

Capacity of a cut (only forward edges)

 $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

Flow crossing a cut (net flow)

$$S,T) = \sum_{u \in S, v \in T} f(u,v) - \sum_{u \in T, v \in S} f(u,v)$$

- For all cuts (S,T) and all feasible flows f, $f(S,T) \leq c(S,T)$ (weak duality).
- \bullet For all pairs of cuts $\ (S_1,T_1)$ and $\ (S_2,T_2)$, and all feasible flows $\ f$, $f(S_1,T_1)=f(S_2,T_2)$.

Examples of cuts

Max-flow min-cut theorem

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- **3.** |f| = c(S,T) for some cut (S,T) of G.

$\underline{\mathbf{Proof}}$

Ford Fulkerson expanded

Ford - Fulkerson(G, s, t)for each edge $(u, v) \in E(G)$ 1 f(u,v) = 02 3 while there exists a path p from s to t in the residual network G_f $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}$ 4 for each edge (u, v) in p $\mathbf{5}$ if $(u, v) \in E$ 6 $f(u,v) = f(u,v) + c_f(p)$ 7 **else** $f(v, u) = f(v, u) - c_f(p)$ 8

Algorithm

Graph (Flow/Capacity)

Algorithm continued

Residual graph (Capacities)

Graph (Flow/Capacity)

Analysis

- 1 iteration of FF takes O(E + V) time (breadth-first search plus bookkeeping).
- Each iteration sends at least one unit of flow.
- Total time $O(f^*E)$.
- This algorithm is only psuedo-polynomial.

