Minimum Spanning Trees

e (= (V. IY) is an undirected graph with non-negative edge weights w : F — Z*

e We assume wlog that edge weights are distinct

e A spanning tree is a tree with 1V — 1 edges, i.e. a tree that connects
all the vertices.

e The total cost (weight) of a spanning tree T is defined as w(7T) = >.cr w(e)

e A minimum spanning tree is a tree of minimum total weight.

14

10

@

15

Minimum Spanning Trees

e (= (V. I/) is an undirected graph with non-negative edge weights w : F — Z*

e We assume wlog that edge weights are distinct

e A spanning tree is a tree with |V — 1 edges, i.e. a tree that connects
all the vertices.

e The total cost (weight) of a spanning tree T is defined as > ¢ € Tw(e)

e A minimum spanning tree is a tree of minimum total weight.

14

10

Cuts

e A cut in a graph is a partition of the vertices into two sets S and 7T'.

e An edge (u,v) with u € S and v € T is said to cross the cut .

—O

Cuts

e A cut in a graph is a partition of the vertices into two sets S and 7T'.

e An edge (u,v) with u € S and v € T is said to cross the cut .

%

Cuts

e A cut in a graph is a partition of the vertices into two sets S and 7T'.

e An edge (u,v) with u € S and v € T is said to cross the cut .

14 10

Greedy Property

Recall that we assume all edges weights are unique.

Greedy Property: The minimum weight edge crossing a cut is in the
minimum spanning tree.

Proof Idea: Assume not, then remove an edge crossing the cut and replace
it with the minimum weight edge.

Restatement Lemma: Let G = (V, F) be an undirected graph with edge
weights w. Let A C E be a set of edges that are part of a minimum
spanning tree. Let (S,7) be a cut with no edges from A crossing it. Then
the minimum weight edge crossing (S,7) can be added to A.

Algorithm Idea: Repeatedly choose an edge according to the Lemma, add
to MST.
Challenge: Finding the edge to add.

Two standard algorithms:
e Kruskal - consider the edges in increasing order of weight

e Prim - start at one vertex and grow the tree.

Example: Run both algorithms

—C

Kruskal’s Algorithm: detailed implementation

Idea: Consider edges in increasing order.

Need: a data structre to maintain the sets of vertices in each component
of the current forrest

e MAKE-SET(v) puts v in a set by itself
e FIND-SET(v) returns the name of v’s set

e UNION(u,v) combines the sets that v and v are in

MST-Kruskal(G, w)

A+
for each vertex v € V[G]

do MAKE-SET(v)
sort the edges of £ into nondecreasing order by weight w
for each edge (u,v) € F, taken in nondecreasing order by weight

do if FIND-SET(u) # FIND-SET(v)

then A +— AU {(u,v)}
UNION(u, v)

© 00O Uik W =

return A

Kruskal Running Time

e I/ MAKE-SET
e I/ UNION

e ' FIND-SET

Analysis After sorting, Kruskal takes Flog"V time (actually slightly
better inverse Ackerman time).

Example

14

10

Prim’s Algorithm

Idea: Grow the MST from one node going out

Need: a data structure to maintain the edgdes crossing the cut, and
choose the minimum. We will maintain, for each vertex, the minimum
weight incident edge crossing the cut

e INSERT(v) puts v in the structure
e EXTRACT-MIN(v) finds and returns the node with minimum key value

e DECREASE-KEY(v,d) updates (decreases) the key of v to ¢

MST-Prim (G, w,r)

1 for each u € V|G|

2 do keylu] + oo

3 m|u] <— NIL

4 INSERT(u)

5 keylr] < 0 ; DECREASE-KEY(r,0)

6 while Q

7 do u < EXTRACT-MIN(Q)

8 for each v € Adju]

9 do if v € Q and w(u,v) < key|v]
10 then 7[v] + u
11 key|v] < w(u,v)
12 DECREASE-KEY (v, key[v])

Analysis

Op Heap Fibonacci Heap (amortized)

V' INSERT lgV
V EXTRACT-MAIN lgV
E DECREASE-KEY lgV

lgV
lgV
1

Total O(FlgV)

O(E+VigV)

Example

14

10

