NP-Completeness

Goal: We want some way to classify problems that are hard to solve, i.e. problems for which we can not find polynomial time algorithms.

For many interesting problems

- we cannot find a polynomial time algorithm
- we cannot prove that no polynomial time algorithm exists
- the best we can do is formalize a class of NP-complete problems that either all have polynomial time algorithms or none have polynomial time algorithms

NP-completeness arises in many fields including

- biology
- chemistry
- economics
- physics
- engineering
- sports
- etc.

Goal in class:

To learn how to prove that problems are NP-complete.
We need a formalism for proving problems hard.

Turing Machine (simplified description)

A Turing Machine has

- Finite state control
- Infinite tape (each square can hold $0,1, \$$, or be blank.
- Read-Write head

Each step of the finite state control is a function
$f($ current state, tape symbol $) \rightarrow($ new state, symbol to write, movement of head)

Example

Program to test if a binary number is even. Input is $\$$ terminated. Output is written immediately after $\$, 1$ for yes, 0 for no.

- Read until \$ (state q_{0})
- Back up, check last digit (state q_{1})
- if even, write a 1 (states q_{2}, q_{3}, q_{F})
- if odd, write a 0 (states q_{4}, q_{5}, q_{F})

Here is a program. Each cell is (new state, write symbol move)

| state | input 0 | input 1 | input \$ |
| :--- | :--- | :--- | :--- | :--- |
| $\left(q_{0}\right)$ | $\left(q_{0},-, R\right)$ | $\left(q_{0},-, R\right)$ | $\left(q_{1},-, L\right)$ |
| $\left(q_{1}\right)$ | $\left(q_{2},-, R\right)$ | $\left(q_{4},-, R\right)$ | error |
| $\left(q_{2}\right)$ | error | error | $\left(q_{3},-, R\right)$ |
| $\left(q_{3}\right)$ | $\left(q_{F}, 1,-\right)$ | $\left(q_{F}, 1,-\right)$ | $\left(q_{F}, 1,-\right)$ |
| $\left(q_{4}\right)$ | error | error | $\left(q_{5},-, R\right)$ |
| $\left(q_{5}\right)$ | $\left(q_{F}, 0,-\right)$ | $\left(q_{F}, 0,-\right)$ | $\left(q_{F}, 0,-\right)$ |
| $\left(q_{F}\right)$ | halt | halt | halt |

Church Turing Thesis The set of things that can be computed on a TM is the same as the set of things that can be computed on any digital computer.

P

Definition Let P be defined as the set of problems that can be solved in polynomial time on a TM (On an input of size n, they can be solved in time $O\left(n^{k}\right)$ for some constant k)

Theorem P is the set of problems that can be solved in polynomial time on the model of computation used in CSOR 4231 and on every modern non-quantum digital computer.

Technicalities

- We assume a reasonable (binary) encoding of input
- Note that all computers are related by a polynomial time transformation. Think of this as a "compiler"

Further details

- We restrict attention to "yes-no" questions
- Shortest path is now "Given a graph G and a number b does the shortest path from s to t have length at most b.
- We do not use the language framework from the book in class

Verification

Verification Given a problem X and a possible solution S, is S a solution to X.

Example X is shortest paths and S is an s - t path in S that is claimed to have length at most b, check whether the path really is of length at most b

Example X is sorting and S is an allegedly sorted list. Is the list really sorted?

Claim Verification is no harder than solving a problem from scratch. We write

$$
\text { Verification } \leq \text { Solving }
$$

Def: NP is the set of problems that can be verified in polynomial time
Formally: Problem X with input of size n is in NP if there exists a "certificate" $\mathbf{y},|y|=\operatorname{poly}(n)$ such that, using y, one can verify whether a solution x is really a solution in polynomial time. (Think of y as the "answer")

Some problems

Longest Path Given a graph G, and number k is the longest simple path from s to t of length $\geq k$.

Satisfiability Given a formula Φ in CNF (conjunctive normal form), does there exist a satisfying assignment to Φ, i.e. an assignment of the variables that evaluates to true.

Big Question

$$
P=N P ? ?
$$

Is solving a problem no harder than verifying?
Don't know answer. Instead we will identify "hardest" problems in NI If any of these are in P then all of NP is in P.

NP-complete

Definition Problem X is NP-complete if

1. $X \in N P$
2. $Y \leq X \quad \forall Y \in N P$

Definition $Y \leq X$ means

- Y is polynomial time reducible to X , which means
there exists a polynomial time computable function f that maps inputs to Y to inputs to X, such that
input y to problem Y returns "Yes" iff input $f(y)$ to problem X returns "Yes"

Informally $Y \leq X$ means that \mathbf{Y} is "not much harder than"("easier than") X

Theorem

$$
\text { If } Y \leq X \text { then } X \in P \Rightarrow Y \in P
$$

Contrapositive
If $Y \leq X$ then $Y \notin P \Rightarrow X \notin P$

SAT

Theorem SAT is NP-complete

Proof idea: The turing machine program for any problem in NP can be verified by a polynomial sized SAT instance that encodes that the input is well formed and that each step follows legally from the next.

Implication We now have one NP-complete problem. We will now reduce other problems to it.

Reductions

- If I want to show that X is easy, I show that in polynomial time I can reduce X to Y , where I already know that Y is easy.
- If I want to show that X is hard, then I reduce Y to X, where I already know that Y is hard.
- So if SAT $\leq X$, then X is hard.

Showing X is NP-complete

To show that X is NP-complete, I show:

1. $X \in N P$
2. For some problem Z that I know to be NP-complete $Z \leq X$

Showing X is NP-complete

To show that X is NP-complete, I show:

1. $X \in N P$
2. For some problem Z that I know to be NP-complete $Z \leq X$

Expanded version: To show that X is NP-complete, I show:

1. $X \in N P$
2. Find a known NP-complete problem Z.
3. Describe f, which maps input z to Z to input $f(z)$ to X.
4. Show that Z with input z returns "yes" iff \mathbf{X} with input $f(z)$ returns "yes'
5. Show that f runs in polynomial time.

3SAT

3SAT is SAT with exactly 3 literals per clause

Example:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge\left(x_{1} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \overline{x_{5}}\right)
$$

Comments

- n variables, m clauses
- 3SAT is a special case of SAT
- If SAT is easy, then 3SAT must be easy
- IS SAT is hard, then ???
- 1-SAT is easy.
- 2-SAT is easy.

3SAT is NP-complete

Expanded version: To show that X is NP-complete, I show:

1. $X \in N P$
2. Find a known NP-complete problem Z.
3. Describe f, which maps input z to \mathbf{Z} to input $f(z)$ to X.
4. Show that Z with input z returns "yes" iff X with input $f(z)$ returns "yes'
5. Show that f runs in polynomial time.
1) 3SAT is in NP. becasue SAT is in NP and 3SAT is a special case of SAT.
2) SAT
$3,4,5)$ Next slde..

Reduction

Approach We need to show how to convert an input to SAT into an input to 3SAT, while preserving yes/no instances. We will give a clause by clause conversion. Let k be the number of literals in a clause

Easy cases:

- $k=1$. $\quad x_{1} \Rightarrow\left(x_{1} \vee x_{1} \vee x_{1}\right)$
- $k=2 \cdot\left(x_{1} \vee x_{2}\right) \Rightarrow\left(x_{1} \vee x_{1} \vee x_{2}\right)$
- $k=3$. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \Rightarrow\left(x_{1} \vee x_{2} \vee x_{3}\right)$

Easy to verify that transformation preserves satisfiability

```
k=4
```

- Need to convert $x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$ to a 3SAT expression.
- Will need more than one clause

First try:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right)
$$

Is this true for exactly the same settings as $x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$?

```
k=4
```

- Need to convert $x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$ to a 3SAT expression.
- Will need more than one clause

First try:

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right)
$$

Is this true for exactly the same settings as $x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$?

No: Consider

$$
\begin{aligned}
& x_{1}=T \\
& x_{2}=F \\
& x_{3}=F \\
& x_{4}=F
\end{aligned}
$$

Lesson: Need additional variables

$$
\underline{k}=4
$$

- Need to convert $\Phi=x_{1} \vee x_{2} \vee x_{3} \vee x_{4}$ to a 3SAT expression.
- Will need more than one clause
- Will need extra variables

3SAT Expression:

$$
\Phi^{\prime}=\left(x_{1} \vee x_{2} \vee y_{1}\right) \wedge\left(\overline{y_{1}} \vee x_{3} \vee x_{4}\right)
$$

Claim: There is a setting of $x_{1}, x_{2}, x_{3}, x_{4}$ that makes Φ true iff there is a setting of $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}$ that makes Φ^{\prime} true.

```
k=5
```

- Need to convert $\Phi=x_{1} \vee x_{2} \vee x_{3} \vee x_{4} \vee x_{5}$ to a 3SAT expression.
- Will need more than one clause
- Will need extra variables

3SAT Expression:

$$
\Phi^{\prime}=\left(x_{1} \vee x_{2} \vee y_{1}\right) \wedge\left(\overline{y_{1}} \vee x_{3} \vee y_{2}\right) \wedge\left(\overline{y_{2}} \vee x_{4} \vee x_{5}\right)
$$

Claim: There is a setting of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ that makes Φ true iff there is a setting of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, y_{1}, y_{2}$ that makes Φ^{\prime} true.

General k

- Need to convert $\Phi=x_{1} \vee x_{2} \vee \ldots \vee x_{k}$ to a 3SAT expression.
- Will need more than one clause
- Will need extra variables

3SAT Expression:

$$
\begin{aligned}
\Phi^{\prime}= & \left(x_{1} \vee x_{2} \vee y_{1}\right) \\
& \wedge\left(\overline{y_{1}} \vee x_{3} \vee y_{2}\right) \\
& \wedge \cdots \\
& \wedge\left(\overline{y_{i-2}} \vee x_{i} \vee y_{i-1}\right) \\
& \wedge \cdots \\
& \wedge\left(\overline{y_{k-4}} \vee x_{k-2} \vee y_{k-3}\right) \\
& \left.\wedge\left(\overline{y_{k-3}} \vee x_{k-1} \vee x_{k}\right)\right)
\end{aligned}
$$

Claim: There is a setting of $x_{1}, x_{2}, \ldots, x_{k}$ that makes Φ true iff there is a setting of $x_{1}, x_{2}, \ldots, x_{k}, y_{1}, \ldots, y_{k-3}$ that makes Φ^{\prime} true.

Recap

- Described f
- f is polynomial time
- A clause with k variables is mapped to $k-2$ clauses of 3 variables each.
- Clauses blow up by a factor of at most n
- Variables blow up by a factor of at most n
- We argued (clause by clause) that Φ is a yes instance to SAT iff Φ^{\prime} is a yes instance to 3SAT.

Sanity Checks

- Why can't we prove that 2SAT is NP-complete via this reduction?
- What does the reduction from 2SAT to 3SAT tell us?

Clique

Definition A k-clique is a set of k vertices with all $\binom{k}{2}$ edges between them.

Clique Given a graph $G=(V, E)$ and an integer k, does G have a k -clique?

Clique

- G has a 4-clique
- G has no 5-clique.

Reduction

Goal We need to describe a function f that takes an instance Φ of 3SAT and produces instances $f(\Phi)=(G, k)$ of \mathbf{k}-clique such that Φ is satisfiable iff $f(\Phi)$ has a k-clique.

Observation To make a 3SAT instance true, we need to make at least one literal in each clause true Strategy:

- A node for each appearance of a literal (a literal is a variable or its negation)
- An edge between literals that can be simultaneously true and in different clauses
- A k-clique will be a set of literals, one per clause, that can all be true simultaneously.

Example

$$
\Phi=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)
$$

Proof

Claim Φ is satisfiable iff G has a k-clique.

Proof

(\Rightarrow) If Φ is satisfiable, then there is a setting of the variables with at least one literal per clause set to true. Let Z be such a set of literals. This set Z cannot contain both x_{1} and $\overline{x_{i}}$, so in the graph G, the nodes in Z have an edge between each pair and therefore form a k-clique.
$((\Leftarrow)$ If G has a k-clique, the clque must consist of k nodes, and they must be 1 per clause and must not have any pairs x_{i} and $\overline{x_{i}}$. Therefore you can set the corresponding literals to true and satisfy Φ

Reflections

- We have actually shown that a "special case" with nodes in groups of 3 of clique is NP-complete. But if a special case is hard, there can't be a general algorithm for clique.
- In the proof, the function f goes one way, from 3SAT to clique, but the proof about yes instances has to go both ways.
- If the proof only went one way, it would be very easy (and incorrect)

Vertex Cover

Defintion Given a graph $G=(V, E)$ and an integer k, a vertex cover $V^{\prime} \subseteq V$ is a subset of the vertices such that for all edges (v, w), at least one of v and w is in V^{\prime}. The vertex cover problem asks whether a graph G has a vertex cover of size at most k.

Claim Vertex cover is NP-complete.

- Vertex cover is in NP
- We will reduce from clique.
- What is the relationship between vertex covers and cliques, i.e. what does the vertex cover of a clique look like.

Reduction

Definition Given a graph $G=(V, E)$ the complement G^{\prime} is the graph in which edges are replaces by non-edges and vica versa.

Claim: G has a k-clique iff G^{\prime} has a vertex cover of size $|V|-k$.

Subset Sum

Definition Given a set of integers $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and a target value t , is there a subset $S^{\prime} \subseteq S$ such that $\sum_{s_{i} \in S^{\prime}}=t$.

Example

$$
S=\{1,4,16,64,256,1040,1041,1093,1284,1344\} \quad t=3754
$$

Solution

$$
S^{\prime}=\{1,16,64,256,1040,1093,1284\}
$$

Question What about $t=3755$?

Reduction

Claim Vertex cover reduces to Subset Sum.
Idea 1: Look at the vertex edge adjacency matrix

	e_{4}	e_{3}	e_{2}	e_{1}	e_{0}
v_{0}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
v_{1}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
v_{2}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
v_{3}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
v_{4}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

We now have numbers!

Ideas

- A vertex cover is a subset R of rows, such that each column has at least one 1 in a row of R.
- Maybe we can think of the rows as binary numbers, can we say something about the sum of the numbers in R.
- Example, $R=\left\{v_{1}, v_{3}, v_{4}\right\}$

	e_{4}	e_{3}	e_{2}	e_{1}	e_{0}
v_{0}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
v_{1}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
v_{2}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
v_{3}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
v_{4}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$v_{1}+v_{3}+v_{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$

- Sort of works:
- If every edge had exactly one endpoint in R, then the binary sum would be 11111, and we would choose $t=11111$.
- Problems:
- Edges can have one or two endpoints in R, which generates carries in base 2.
- What should t be?
- We ignored k.

Fixes

Problems:

- Edges can have one or two endpoints in R, which generates carries in base 2. Use base 4, and there won't be any carries
- What should t be?
- We ignored k. Add an extra column to "count". It will be the left-most column, so carries don't matter

	vert	e_{4}	e_{3}	e_{2}	e_{1}	e_{0}
x_{0}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
x_{1}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
x_{2}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
x_{3}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
x_{4}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$x v_{1}+x_{3}+x_{4}$	$\mathbf{(3)}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$

- Still have a problem, what should t be?
- We will introduce dummy rows to allow us to say that columns should sum to exactly 2 .

Final reduction

Claim G has a verex cover of size k iff the subset sum instance has a set that sums to t.

Hamiltonian Cycle

Definition Given a graph $G=(V, E)$, is there cycle visiting each vertex exactly once?

Fact Hamiltonian Cycle is NP-complete. See book for reduction.

Travelling Salesman Problem Given a graph $G=(V, E)$ with edge weights w and an integer B. Is there a Hamilonian Cycle C s.t.

$$
\sum_{e \in C} w(e) \leq B
$$

Claim Travelling Salesman Problem is NP-complete, via a reduction from Hamiltonian Cycle.

More NP-complete problems

Minimum Makespan Scheduling Given n jobs with processing times p_{1}, \ldots, p_{n}, and m identical machines and a number B. a schedule assigns each job to a machine. If J_{i} is the set of jobs assigned to machine i, then the load on machine $i, L_{i}=\sum_{j \in J_{i}} p_{j}$. The makespan of the schedule is the maximum machine load $M=\max _{i} L_{i}$. You want to know if there exists a schedule with makespan at most B.

3 -partition Given a set of $3 n$ numbers $x_{1}, \ldots, x_{3 n}$, with $\sum_{i=1}^{3 n} x_{i}=n B$, can you partition the numbers into n groups, each with 3 elements and each summing to B.

