Randomization in Algorithms

- Randomization is a tool for designing good algorithms.
- Two kinds of algorithms
- Las Vegas - always correct, running time is random.
- Monte Carlo - may return incorrect answers, but running time is deterministic.

Hiring Problem

```
Hire - Assistant(n)
1 best \leftarrow0 D candidate 0 is a least-qualified dummy candidate
2 for }i\leftarrow1\mathrm{ to }
3 do interview candidate i
4 if candidate i is better than candidate best
5 then best }\leftarrow
6
    hire candidate i
```

How many times is a new person hired?

Analysis

- A random variable X takes on values from some set, each with a certain probability.
- Expected value: $E[X]=\Sigma_{\text {values }} \operatorname{Pr}(X=x) \cdot x$
- Example: rolling a die.

Expected number of hirings

- Assume that all orderings of candidates are equally likely.
- n ! orderings, $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$!
- H is the total number of hirings.
- $h\left(\pi_{i}\right)$ is the number of hirings for permutation π_{i}.

$$
E[H]=\sum_{\pi_{i}} \frac{1}{n!} h\left(\pi_{i}\right)
$$

How do we compute $\mathrm{E}[\mathrm{H}]$?

Indicator random variables

- Let A be an event.
- The indicator variable $I\{A\}$ is defined by:

$$
I\{A\}=\left\{\begin{array}{l}
1 \text { if } A \text { occurs } \tag{1}\\
0 \text { if } A \text { does not occur } .
\end{array}\right.
$$

What is the expected number of heads when I flip a coin?

- Let Y be a random variable that denotes heads or tails.
- Let X_{H} be the i.r.v. that counts the number of heads.

$$
X_{H}=I\{Y \text { is heads }\}= \begin{cases}1 & \text { if } \mathbf{Y} \text { is heads } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
E\left[X_{H}\right] & =\operatorname{Pr}\left(X_{H}=1\right) \cdot 1+\operatorname{Pr}\left(X_{H}=0\right) \cdot 0 \\
& =\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 0 \\
& =\frac{1}{2}
\end{aligned}
$$

Linearity of Expectation

Let X and Y be two random variables
$E[X+Y]=E[X]+E[Y]$
Linearity of expectation holds even if X and Y are dependent.

n coin flips

- What is E [number of heads] when you flip n coins.
- Different events are:
- 0 heads
- 1 head
- 2 heads
-3 heads
$-.$.

$$
E[\text { number of heads }]=\sum_{i=0}^{n} \operatorname{Pr}(\mathbf{i} \text { heads in n flips }) \cdot i
$$

- Complicated calculation
- Is there another way?

Use indicator random variables

- Divide events not by number of heads overall, but by heads in i th flip.
- Let X_{i} be the indicator random variable associated with the event in which the i th flip comes up heads:
- $X_{i}=I\{$ the i th flip results in the event $H\}$.
- Let X be the random variable denoting the total number of heads in the n coin flips
- $X=\sum_{i=1}^{n} X_{i}$.
- We take the expectation of both sides $E[X]=E\left[\Sigma_{i=1}^{n} X_{i}\right]$.

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E\left[X_{i}\right] \\
& =\sum_{i=1}^{n} 1 / 2 \\
& =n / 2 .
\end{aligned}
$$

Hiring

- Divide events not by number of hires overall, but by hires in i th flip.
- Let X_{i} be the indicator random variable associated with the event in which the i th person is hired
- $X_{i}=I\{$ the i th person is hired $\}$.
- Let X be the random variable denoting the total number of people hired.
- $X=\sum_{i=1}^{n} X_{i}$.
- We take the expectation of both sides $E[X]=E\left[\Sigma_{i=1}^{n} X_{i}\right]$.

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E\left[X_{i}\right] \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}=1\right)
\end{aligned}
$$

What is $\operatorname{Pr}\left(X_{i}\right)=1$?

Analysis

What is $\operatorname{Pr}\left(X_{j}=1\right)$, the probability that we hire on the j th day?

$$
\operatorname{Pr}\left(X_{1}=1\right)=? ?
$$

Analysis

What is $\operatorname{Pr}\left(X_{j}=1\right)$, the probability that we hire on the j th day?

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{1}=1\right)=1 \\
& \operatorname{Pr}\left(X_{2}=1\right)=? ?
\end{aligned}
$$

Analysis

What is $\operatorname{Pr}\left(X_{j}=1\right)$, the probability that we hire on the j th day?

$$
\begin{gathered}
\operatorname{Pr}\left(X_{1}=1\right)=1 \\
\operatorname{Pr}\left(X_{2}=1\right)=1 / 2 \\
\operatorname{Pr}\left(X_{j}=1\right)=? ?
\end{gathered}
$$

Analysis

What is $\operatorname{Pr}\left(X_{j}=1\right)$, the probability that we hire on the j th day?

$$
\begin{gathered}
\operatorname{Pr}\left(X_{1}=1\right)=1 \\
\operatorname{Pr}\left(X_{2}=1\right)=1 / 2
\end{gathered}
$$

$$
\operatorname{Pr}\left(X_{j}=1\right)=1 / j
$$

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} E\left[X_{i}\right] \\
& =\sum_{i=1}^{n} \operatorname{Pr}\left(X_{i}=1\right) \\
& =\sum_{i=1}^{n} \frac{1}{i} \\
& \approx \ln n
\end{aligned}
$$

Randomized algorithms vs. Probabilistic Analysis

- We have assumed that the candidates come in a random order.
- Can we remove this assumption?

Randomized algorithms vs. Probabilistic Analysis

- We have assumed that the candidates come in a random order.
- Can we remove this assumption?

Randomize the algorithm:

- Force the candidates to come in a random order by randomly permuting the data, before we start.
- We have now eliminated an adversarial-chosen bad case, the only bad case is to be extremely unlucky in our coin flips.

Case of Sorting

Scenario Imagine a sorting algorithm whose bad case is when the data comes in reverse sorted order.

- Data is "random": Bad case is reverse sorted order.
- Algorithm is random: some set of coin flips that occur with probability $1 / n$! makes the algorithm slow

Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the n ! possible permutations are equally likely.

```
Randomize-In-Place(A)
```

$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{Random}(i, n)]$

Lemma Procedure Randomize-In-Place computes a uniform random permutation.

Def Given a set of n elements, a k-permutation is a sequence containing k of the n elements.

There are $n!/(n-k)$! possible k-permutations of n elements

Proof via Loop invariant

We use the following loop invariant:
Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Initialization

Randomize-In-Place(A)
$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{Random}(i, n)]$

Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Initialization Consider the situation just before the first loop iteration, so that $i=1$. The loop invariant says that for each possible 0 -permutation, the subarray $A[1 \ldots 0]$ contains this 0 -permutation with probability $(n-i+$ $1)!/ n!=n!/ n!=1$. The subarray $A[1 \ldots 0]$ is an empty subarray, and a 0 permutation has no elements. Thus, $A[1 . .0]$ contains any 0 -permutation with probability 1 , and the loop invariant holds prior to the first iteration.

Maintenance

Randomize-In-Place(A)
$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{Random}(i, n)]$

Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Maintenance We assume that just before the $(i-1)$ st iteration, each possible ($i-1$)-permutation appears in the subarray $A[1 \ldots i-1]$ with probability $(n-i+1)!/ n!$, and we will show that after the i th iteration, each possible i-permutation appears in the subarray $A[1 \ldots i]$ with probability $(n-i)!/ n!$. Incrementing i for the next iteration will then maintain the loop invariant.

Let us examine the i th iteration. Consider a particular i-permutation, and denote the elements in it by $\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle$. This permutation consists of an ($i-1$)-permutation $<x_{1}, \ldots, x_{i-1}>$ followed by the value x_{i} that the algorithm places in $A[i]$. Let E_{1} denote the event in which the first $i-1$ iterations have created the particular $(i-1)$-permutation $\left\langle x_{1}, \ldots, x_{i-1}\right\rangle$ in $A[1 . . i-1]$. By the loop invariant, $\operatorname{Pr}\left(E_{1}\right)=(n-i+1)!/ n!$. Let E_{2} be the event that i th iteration puts x_{i} in position $A[i]$. The i-permutation $\left\langle x_{1}, \ldots, x_{i}\right\rangle$ is formed in $A[1 \ldots i]$ precisely when both E_{1} and E_{2} occur, and so we wish to compute $\operatorname{Pr}\left(E_{2} \cap E_{1}\right)$. Using equation ??, we have

$$
\operatorname{Pr}\left(E_{2} \cap E_{1}\right)=\operatorname{Pr}\left(E_{2} \mid E_{1}\right) \operatorname{Pr}\left(E_{1}\right) .
$$

The probability $\operatorname{Pr}\left(E_{2} \mid E_{1}\right)$ equals $1 /(n-i+1)$ because in line 3 the algorithm chooses x_{i} randomly from the $n-i+1$ values in positions $A[i \ldots n]$. Thus, we have

$$
\begin{aligned}
\operatorname{Pr}\left(E_{2} \cap E_{1}\right) & =\operatorname{Pr}\left(E_{2} \mid E_{1}\right) \operatorname{Pr}\left(E_{1}\right) \\
& =\frac{1}{n-i+1} \cdot \frac{(n-i+1)!}{n!} \\
& =\frac{(n-i)!}{n!} .
\end{aligned}
$$

Termination

Randomize-In-Place(A)
$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{Random}(i, n)]$

Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Termination At termination, $i=n+1$, and we have that the subarray $A[1 \ldots n]$ is a given n-permutation with probability $(n-n)!/ n!=1 / n!$.

Birthday Paradox

Setup:

- n people
- Do two people have the same birthday?
- Compute expected number of pairs of people that have the same birthday.
- $X_{i j}$ is indicator random variable associated with i and j having the same birthday.
- X is the expected number of pairs that have the same birthday

$$
\begin{aligned}
X & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j} \\
E[X] & =E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]
\end{aligned}
$$

Birthday Paradox

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}[i \text { and } j \text { have the same birthday }] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{365} \\
& =\binom{n}{2} \frac{1}{365} \\
& =\frac{n(n-1)}{730}
\end{aligned}
$$

Values

$$
\begin{array}{rc}
n=23 & .69 \\
n=28 & 1.03 \\
n=64 & 5.5 \\
n=90 & 10.9 \\
n=140 & 26.6
\end{array}
$$

Streaks

Question: Suppose we flip n coins, what is the longest streak of heads?

Answer:

- Use indicator random variables.
- Let $X_{i} k$ be the event that there is a streak of length k starting at position $i .(A[i \ldots i+k-1]$ are all heads.
- Let X_{k} be the number of streaks of length k.
- $X_{k}=\sum_{i=1}^{n-k+1} X_{i k}$

$$
\begin{aligned}
E\left[X_{k}\right] & =E\left[\sum_{i=1}^{n-k+1} X_{i k}\right] \\
& =\sum_{i=1}^{n-k+1} E\left[X_{i k}\right] \\
& =\sum_{i=1}^{n-k+1} \operatorname{Pr}(\text { streak of length } k \text { starting at position } i] \\
& =\sum_{i=1}^{n-k+1} 2^{-k} \\
& =\frac{n-k+1}{2^{k}}
\end{aligned}
$$

What is the behavior of

$$
\frac{n-k+1}{2^{k}}
$$

? What is it around 1?

When do we have 1 streak of length k

Think about?

$$
n-k+1=2^{k}
$$

so if $k=c \lg n$ for some c, we have

$$
\frac{n-k+1}{2^{k}}=\frac{n-c \lg n+1}{2^{c \lg n}}=\frac{n-c \lg n+1}{n^{c}}
$$

- if $c=1$, then the expected number is around 1 .
- if $c \gg 1$, then the expected number starts to decrease rapidly.
- if $c \ll 1$, then the expected number starts to increase rapidly.
- so the longest streak should be around length $\lg n$.

