
Shortest Paths

• Input: weighted, directed graph G = (V,E), with weight function w :

E → R.

• The weight of path p =< v0, v1, . . . , vk > is the sum of the weights of its

constituent edges:

w(p) =
k∑
i=1
w(vi−1, vi) .

• The shortest-path weight from u to v is

δ(u, v) = { min{w(p)} if there is a path p from u to v ,

∞ otherwise .

• A shortest path from vertex u to vertex v is then defined as any path

p with weight w(p) = δ(u, v).



Example

s

a

b

c

f

t

3

4

6

2

5

7 1

8

4



Solution

s

a

b

c

f

t

3

4

6

2

5

7 1

8

4

3 5

64

10



Shortest Paths

Shortest Path Variants

• Single Source-Single Sink

• Single Source (all destinations from a source s)

• All Pairs

Defs:

• Let δ(v) be the real shortest path distance from s to v

• Let d(v) be a value computed by an algorithm

Edge Weights

• All non-negative

• Arbitrary

Note: Must have no negative cost cycles



Single Source Shortest Paths

Key Property: Subpaths of shortest paths are shortest paths Given a

weighted, directed graph G = (V,E) with weight function w : E → R, let

p =< v1, v2, . . . , vk > be a shortest path from vertex v1 to vertex vk and, for

any i and j such that 1 ≤ i ≤ j ≤ k, let pij =< vi, vi+1, . . . , vj > be the subpath

of p from vertex vi to vertex vj. Then, pij is a shortest path from vi to vj.

Note: this is optimal substructure

Corollary 1 For all edges (u, v) ∈ E,

δ(v) ≤ δ(u) + w(u, v)

Corollary 2 Shortest paths follow a tree of edges for which

δ(v) = δ(u) + w(u, v)

More precisely, any edge in a shortest path must satisfy

δ(v) = δ(u) + w(u, v)



Relaxation

Relax(u, v, w)

1 if d[v] > d[u] + w(u, v)

2 then d[v]← d[u] + w(u, v)

3 π[v]← u (keep track of actual path)

Lemma: Assume that we initialize all d(v) to ∞, d(s) = 0 and execute a

series of Relax operations. Then for all v, d(v) ≥ δ(v).

Lemma: Let P = e1, . . . , ek be a shortest path from s to v. After initial-

ization, suppose that we relax the edges of P in order (but not necessarily

consecutively). Then d(v) = δ(v).



Example

s

a b

c d

2

6

−8

3

5

5

6 4

e
−1



Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but

not necessarily consecutively).



Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but

not necessarily consecutively).

Bellman-Ford(G,w, s)

1 Initialize-Single-Source(G, s)

2 for i← 1 to |V [G]| − 1

3 do for each edge (u, v) ∈ E[G]
4 do Relax(u, v, w)

5 for each edge (u, v) ∈ E[G]
6 do if d[v] > d[u] + w(u, v)

7 then return false

8 return true

Initialize− Single− Source(G, s)
1 for each vertex v ∈ V [G]

2 do d[v]←∞
3 π[v]← nil

4 d[s]← 0



Example

s

a b

c d

2

6

−8

3

5

5

6 4

e
−1



Correctness of Bellman Ford

• Every shortest path must be relaxed in order

• If there are negative weight cycles, the algorithm will return false

Running Time O(V E)



All edges non-negative

• Dijkstra’s algorithm, a greedy algorithm

• Similar in spirit to Prim’s algorithm

• Idea: Run a discrete event simulation of breadth-first-search. Figure

out how to implement it efficiently

• Can relax edges out of each vertex exactly once.

Dijkstra(G,w, s)

1 Initialize-Single-Source(G, s)

2 S ← ∅
3 Q← V [G] � This line does V Inserts

4 while Q 6= ∅
5 do u← Extract-Min(Q)

6 S ← S ∪ {u}
7 for each vertex v ∈ Adj [u]

8 do Relax(u, v, w) � This line does a Decrease-Key



Example

s

a

b

c

f

t

3

4

6

2

5

7 1

8

4



Correctness

Correctness of Dijkstra’s algorithm Dijkstra’s algorithm, run on a weighted,

directed graph G = (V,E) with nonnegative weight function w and source

s, terminates with d[v] = δ(s, v) for all vertices u ∈ V .

Claim to Prove: When v is put in S , d(v) = δ(v) .



Proof

Claim to Prove: When v is put in S , d(v) = δ(v) .

Proof

• d(v) ≥ δ(v) becauase any algorithm that does a sequence of Relax calls

has this property.

• Assume fpoc that d(v) > δ(v) , and that v is the first such vertex that

is permanently labelled that has this property.

• Consider the state of the world just before v is put in S

– shortest path from s to v goes through an edge (x, y) where x ∈ S
and y 6∈ S (it is possible that y = v and/or x = s .

– d(x) = δ(x) , because x ∈ S
– d(y) = δ(y) because (x, y) was relaxed when x was put in S .

• Putting these together with δ(y) ≤ δ(v) because y is before v on a

shortest path, we have

d(y) = δ(y) ≤ δ(v) < d(v)

.

• d(y) < d(v) , so the algorithm would have chosen to permanently label y

and not v , which is a contradiction.



Running Time

• E decrease keys and V delete-min’s

• O(E log V ) using a heap

• O(E + V log V ) using a Fibonacci heap



Shortest Path in a DAG

Dag-Shortest-Paths(G,w, s)

1 topologically sort the vertices of G

2 Initialize-Single-Source′(G, s)

3 for each u taken in topological order

4 do for each v ∈ Adj[u]
5 do Relax(u, v, w)



Example

s

a

b

c

f

t

3

4

6

2

5

7 1

8

4



Correctness and Running Time

Correctness If a weighted, directed graph G = (V,E) has source vertex s and

no cycles, then at the termination of the Dag-Shortest-Paths procedure,

d[v] = δ(s, v) for all vertices v ∈ V , and the predecessor subgraph Gπ is a

shortest-paths tree.

Running Time

• Topological sort is linear time

• Each edge is relaxed once

• No additional data structure overhead

O(V + E) time.


