Shortest Paths

e Input: weighted, directed graph G = (V, F), with weight function w :

E — R.

e The weight of path p =< vy, v,..
constituent edges:

., v > is the sum of the weights of its

k
w(p) = Z:lw(vi—lavi) :

e The shortest-path weight from u to v is
min{w(p)} if there is a path p from u to v ,
d(u,v) ={ .
00 otherwise .

e A shortest path from vertex u to vertex v is then defined as any path

p with weight w(p) = d(u, v).

Solution

y

Shortest Paths

Shortest Path Variants

e Single Source-Single Sink
e Single Source (all destinations from a source s)

e All Pairs

Defs:
e Let §(v) be the real shortest path distance from s to v

e Let d(v) be a value computed by an algorithm

Edge Weights
e All non-negative

e Arbitrary

Note: Must have no negative cost cycles

Single Source Shortest Paths

Key Property: Subpaths of shortest paths are shortest paths Given a
weighted, directed graph G = (V. E) with weight function w : £ — R, let
p =< v1,V9,...,U; > be a shortest path from vertex v; to vertex v, and, for
any ¢ and j such that 1 <: <j <k, let p;; =< v;,vi11,...,v; > be the subpath
of p from vertex v; to vertex v;. Then, p;; is a shortest path from v; to v;.

Note: this is optimal substructure

Corollary 1 For all edges (u,v) € E,
d(v) < 6(u) +wu,v)

Corollary 2 Shortest paths follow a tree of edges for which
d(v) = d(u) + w(u,v)
More precisely, any edge in a shortest path must satisfy

d(v) = d(u) + w(u,v)

Relaxation

Relax(u, v, w)

1 if djv] > du] + w(u,v)

2 then d[v] « d[u] + w(u,v)

3 7[v] < u (keep track of actual path)

Lemma: Assume that we initialize all d(v) to oo, d(s) = 0 and execute a
series of Relax operations. Then for all v, d(v) > §(v).

Lemma: Let P =e,...,e; be a shortest path from s to v. After initial-
ization, suppose that we relax the edges of P in order (but not necessarily
consecutively). Then d(v) = §(v).

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but
not necessarily consecutively).

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but
not necessarily consecutively).

Bellman-Ford(G, w, s)

1
2
3
4
5]
6
7
8

INITIALIZE-SINGLE-SOURCE(G, $)
for 1 + 1 to |V[G]| — 1
do for each edge (u,v) € E|G]

do RELAX(u, v, w)

for each edge (u,v) € E|G]
do if d[v] > d[u] + w(u,v)

then return FALSE

return TRUE

Initialize — Single — Source(G, s)

- W N =

for each vertex v € V|G|
do d[v] < oo

d[s] < 0

T|v] <= NIL

Correctness of Bellman Ford

e Every shortest path must be relaxed in order

e If there are negative weight cycles, the algorithm will return false

Running Time O(VE)

All edges non-negative

e Dijkstra’s algorithm, a greedy algorithm
e Similar in spirit to Prim’s algorithm

e Idea: Run a discrete event simulation of breadth-first-search. Figure
out how to implement it efficiently

e Can relax edges out of each vertex exactly once.

Dijkstra(G,w, s)

OO ULk Wi =

INITIALIZE-SINGLE-SOURCE(G, $)
S0
Q) < V[G] > This line does V INSERTSs
while Q # ()
do u < EXTRACT-MIN(Q)
S+ SU{u}
for each vertex v € Adj[ul
do RELAX(u,v,w) > This line does a DECREASE-KEY

Correctness

Correctness of Dijkstra’s algorithm Dijkstra’s algorithm, run on a weighted,
directed graph G = (V, F) with nonnegative weight function w and source
s, terminates with d[v] = §(s,v) for all vertices u € V.

Claim to Prove: When v isputin S, d(v)=9d(v) .

Proof

Claim to Prove: When v isputin S, d(v)=4d(v).

Proof

e d(v) > d(v) becauase any algorithm that does a sequence of Relax calls
has this property.

e Assume fpoc that d(v) > d(v) , and that v is the first such vertex that
is permanently labelled that has this property.

e Consider the state of the world just before v is put in S

— shortest path from s to v goes through an edge (r,y) where = € S
and y ¢ S (it is possible that y =v and/or = =s.

—d(x)=90(x) , because = € S

—d(y) =9d(y) because (z,y) was relaxed when = was put in 5 .

e Putting these together with ¢§(y) < d(v) because y is before v on a
shortest path, we have

d(y) = d(y) < do(v) < d(v)

e d(y) < d(v) , so the algorithm would have chosen to permanently label y
and not v , which is a contradiction.

Running Time

e [/ decrease keys and V' delete-min’s
e O(ElogV) using a heap
e O(F + VlogV) using a Fibonacci heap

Shortest Path in a DAG

Dag-Shortest-Paths(G, w, s)

1
2
3
4
5]

topologically sort the vertices of GG
INITIALIZE-SINGLE-SOURCE'(G, s)
for each u taken in topological order
do for each v € Adj|u]
do RELAX(u, v, w)

Correctness and Running Time

Correctness If a weighted, directed graph G = (V, F) has source vertex s and
no cycles, then at the termination of the DAG-SHORTEST-PATHS procedure,
dlv] = (s,v) for all vertices v € V, and the predecessor subgraph G, is a
shortest-paths tree.

Running Time
e Topological sort is linear time
e Each edge is relaxed once
e No additional data structure overhead

O(V + E) time.

