All Pairs Shortest Paths

- Input: weighted, directed graph $G=(V, E)$, with weight function w : $E \rightarrow \mathbf{R}$.
- The weight of path $p=<v_{0}, v_{1}, \ldots, v_{k}>$ is the sum of the weights of its constituent edges:

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) .
$$

- The shortest-path weight from u to v is

$$
\delta(u, v)= \begin{cases}\min \{w(p)\} & \text { if there is a path } p \text { from } u \text { to } v \\ \infty & \text { otherwise } .\end{cases}
$$

- A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p)=\delta(u, v)$.

All Pairs Shortest Paths: Compute $d(u, v)$ the shortest path distance from u to v for all pairs of vertices u and v.

Example

Solution

$$
\left(\begin{array}{rrrr}
0 & 3 & 15 & 8 \\
7 & 0 & 12 & 5 \\
1 & 4 & 0 & -1 \\
2 & -4 & 8 & 0
\end{array}\right)
$$

Approach 1

Run Single source shortest paths V times

- $O\left(V^{2} E\right)$ for general graphs
- $O\left(V E+V^{2} \log V\right)$ for graphs with non-negative edge weights

Other approaches : Share information between the various computations

Floyd-Warshall, Dynamic Programming

- Let $d_{i j}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1,2, \ldots, k\}$.
- When $k=0$, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all, hence $d_{i j}^{(0)}=w_{i j}$.

$$
d_{i j}^{(k)}=\left\{\begin{align*}
w_{i j} & \text { if } k=0, \tag{1}\\
\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1 .
\end{align*}\right.
$$

Floyd-Warshall(W)

```
\(n \leftarrow \operatorname{rows}[W]\)
\(D^{(0)} \leftarrow W\)
for \(k \leftarrow 1\) to \(n\)
    do for \(i \leftarrow 1\) to \(n\)
            do for \(j \leftarrow 1\) to \(n\)
                do \(d_{i j}^{(k)} \leftarrow \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
```

7 return $D^{(n)}$
Running time $O\left(V^{3}\right)$

Example

Another Algorithm

RESET ALL DEFINITIONS OF D.

- Let $w_{i j}$ be the length of edge $i j$
- Let $w_{i i}=0$
- Let $d_{i j}^{m}$ be the shortest path from i to j using m or fewer edges

$$
\begin{gathered}
d_{i j}^{1}=w_{i j} \\
d_{i j}^{m}=\min \left\{d_{i j}^{m-1}, \min _{1 \leq k \leq n, k \neq j} d_{i k}^{m-1}+w_{k j}\right\}
\end{gathered}
$$

Combining these two, we get

$$
d_{i j}^{m}=\min _{1 \leq k \leq n}\left\{d_{i k}^{m-1}+w_{k j}\right\}
$$

This would give an $O\left(V^{4}\right)$ algorithm

Using matrix multiplication analogy

Note the similarity of

$$
d_{i j}^{m}=\min _{1 \leq k \leq n}\left\{d_{i k}^{m-1}+w_{k j}\right\}
$$

with matrix multiplication:

$$
c_{i j}=\operatorname{sum}_{1 \leq k \leq n}\left\{a_{i k} \cdot k_{k j}\right\}
$$

Make the following substitutions (which have the right algebraic properties:

$$
\begin{aligned}
\text { sum } & \rightarrow \text { min } \\
a_{i j} & \rightarrow d_{i k}^{m-1} \\
\cdot & \rightarrow+ \\
b_{k j} & \rightarrow w_{i j} \\
c & \rightarrow d^{m}
\end{aligned}
$$

Using this matrix multiplication terminology, we have

$$
\begin{array}{cll}
D^{1} & & =W \\
D^{2} & =D^{1} \cdot W & =W^{2} \\
D^{3} & =D^{2} \cdot W & =W^{3} \\
\cdots & \cdots & \cdots \\
D^{m}=D^{m-1} W & =W^{m}
\end{array}
$$

But we can execute W^{m} be repeated squaring and get $O\left(V^{3} \log V\right)$ time.

