
All Pairs Shortest Paths

• Input: weighted, directed graph G = (V, E), with weight function w :

E → R.

• The weight of path p =< v0, v1, . . . , vk > is the sum of the weights of its

constituent edges:

w(p) =
k∑

i=1
w(vi−1, vi) .

• The shortest-path weight from u to v is

δ(u, v) = { min{w(p)} if there is a path p from u to v ,

∞ otherwise .

• A shortest path from vertex u to vertex v is then defined as any path

p with weight w(p) = δ(u, v).

All Pairs Shortest Paths: Compute d(u, v) the shortest path distance from

u to v for all pairs of vertices u and v.

Example

3

12

−1

2

4 −4

5

1 2

34

Solution

0 3 15 8

7 0 12 5

1 4 0 −1

2 −4 8 0

Approach 1

Run Single source shortest paths V times

• O(V 2E) for general graphs

• O(V E + V 2 log V) for graphs with non-negative edge weights

Other approaches : Share information between the various computations

Floyd-Warshall, Dynamic Programming

• Let d
(k)
ij be the weight of a shortest path from vertex i to vertex j for

which all intermediate vertices are in the set {1, 2, . . . , k}.

• When k = 0, a path from vertex i to vertex j with no intermediate

vertex numbered higher than 0 has no intermediate vertices at all, hence

d
(0)
ij = wij.

d
(k)
ij =

wij if k = 0 ,

min
(
d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
if k ≥ 1 .

(1)

Floyd-Warshall(W)

1 n← rows [W]

2 D(0) ← W

3 for k ← 1 to n

4 do for i← 1 to n

5 do for j ← 1 to n

6 do d
(k)
ij ← min

(
d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
7 return D(n)

Running time O(V 3)

Example

3

12

−1

2

4 −4

5

1 2

34

D0 =

0 3 0 0

0 0 12 5

4 0 0 −1

2 −4 0 0

D1 =

0 3 0 0

0 0 12 5

4 7 0 −1

2 −4 0 0

D2 =

0 3 15 8

0 0 12 5

4 7 0 −1

2 −4 8 0

D3 =

0 3 15 8

16 0 12 5

4 7 0 −1

2 −4 8 0

D4 =

0 3 15 8

7 0 12 5

1 −5 0 −1

2 −4 8 0

Another Algorithm

RESET ALL DEFINITIONS OF D.

• Let wij be the length of edge ij

• Let wii = 0

• Let dm
ij be the shortest path from i to j using m or fewer edges

d1
ij = wij

dm
ij = min{dm−1

ij , min
1≤k≤n,k 6=j

dm−1
ik + wkj}

Combining these two, we get

dm
ij = min

1≤k≤n
{dm−1

ik + wkj}

This would give an O(V 4) algorithm

Using matrix multiplication analogy

Note the similarity of

dm
ij = min

1≤k≤n
{dm−1

ik + wkj}

with matrix multiplication:

cij = sum1≤k≤n{aik · kkj}
Make the following substitutions (which have the right algebraic proper-

ties:

sum → min

aij → dm−1
ik

· → +

bkj → wij

c → dm

Using this matrix multiplication terminology, we have

D1 = W

D2 = D1 ·W = W 2

D3 = D2 ·W = W 3

.

Dm = Dm−1W = Wm

But we can execute Wm be repeated squaring and get O(V 3 log V) time.

