Dynamic Programming

We'd like to have "generic" algorithmic paradigms for solving problems

Example: Divide and conquer

- Break problem into independent subproblems
- Recursively solve subproblems (subproblems are smaller instances of main problem)
- Combine solutions

Examples:

- Mergesort,
- Quicksort,
- Strassen's algorithm
- ...

Dynamic Programming: Appropriate when you have recursive subproblems that are not independent

Example: Making Change

Problem: A country has coins with denominations

$$
1=d_{1}<d_{2}<\cdots<d_{k}
$$

You want to make change for n cents, using the smallest number of coins.
Example: U.S. coins

$$
d_{1}=1 \quad d_{2}=5 \quad d_{3}=10 \quad d_{4}=25
$$

Change for 37 cents - 1 quarter, 1 dime, 2 pennies.
What is the algorithm?

Change in another system

Suppose

$$
d_{1}=1 \quad d_{2}=4 \quad d_{3}=5 \quad d_{4}=10
$$

- Change for 7 cents - 5,1,1
- Change for 8 cents - 4,4

What can we do?

Change in another system

Suppose

$$
d_{1}=1 \quad d_{2}=4 \quad d_{3}=5 \quad d_{4}=10
$$

- Change for 7 cents - 5,1,1
- Change for 8 cents - 4,4

What can we do?

The answer is counterintuitive. To make change for n cents, we are going to figure out how to make change for every value $x<n$ first. We then build up the solution out of the solution for smaller values.

Solution

We will only concentrate on computing the number of coins. We will later recreate the solution.

- Let $C[p]$ be the minimum number of coins needed to make change for p cents.
- Let x be the value of the first coin used in the optimal solution.
- Then $C[p]=1+C[p-x]$.

Problem: We don't know x.

Solution

We will only concentrate on computing the number of coins. We will later recreate the solution.

- Let $C[p]$ be the minimum number of coins needed to make change for p cents.
- Let x be the value of the first coin used in the optimal solution.
- Then $C[p]=1+C[p-x]$.

Problem: We don't know x.

Answer: We will try all possible x and take the minimum.

$$
C[p]=\left\{\begin{aligned}
\min _{i: d_{i} \leq p}\left\{C\left[p-d_{i}\right]+1\right\} & \text { if } p>0 \\
0 & \text { if } p=0
\end{aligned}\right.
$$

Example: penny, nickel, dime

$$
C[p]=\left\{\begin{aligned}
\min _{i: d_{i} \leq p}\left\{C\left[p-d_{i}\right]+1\right\} & \text { if } p>0 \\
0 & \text { if } p=0
\end{aligned}\right.
$$

```
Change(p)
if \((p<0)\)
    then return \(\infty\)
elseif \((p=0)\)
    then return 0
    else
return \(1+\min \{\operatorname{Change}(p-1), \operatorname{Change}(p-5), \operatorname{Change}(p-10)\}\)
```

What is the running time? (don't do analysis here)

Dynamic Programming Algorithm

```
DP-CHANGE( \(\mathbf{n}\) )
\(C[<0]=\infty\)
\(C[0]=0\)
for \(p=2\) to \(n\)
    do \(\min =\infty\)
    for \(i=1\) to \(k\)
do if \(\left(p \geq d_{i}\right)\)
then if \(\left.\left(C\left[p-d_{i}\right]\right)+1<\min \right)\)
then \(\min =C\left[p-d_{i}\right]+1\)
coin \(=i\)
10
11
    \(C[p]=\min\)
12
    \(S[p]=\) coin
```

Running Time: $O(n k)$

Dynamic Programming

Used when:

- Optimal substructure
- Overlapping subproblems

Methodology

- Characterize structure of optimal solution
- Recursively define value of optimal solution
- Compute in a bottom-up manner

