Basics of Algorithm Analysis

- We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).
- We work in the RAM model of computation. All "reasonable" operations take " 1 " unit of time. (e.g.,+ , - , /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

- Best case (seldom used)
- Average case (used if we understand the average)
- Worst case (used most often)

We measure as a function of n, and ignore low order terms.

- $5 n^{3}+n-6$ becomes n^{3}
- $8 n \log n-60 n$ becomes $n \log n$
- $2^{n}+3 n^{4}$ becomes 2^{n}

Asymptotic notation

big-O
$O(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$.
Alternatively, we say
$f(n)=O(g(n))$ if there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$
Informally, $f(n)=O(g(n))$ means that $f(n)$ is asymptotically less than or equal to $g(n)$.
big- Ω
$\Omega(g(n))=\left\{f(n):\right.$ there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$.
Alternatively, we say

$$
\begin{aligned}
& f(n)=\Omega(g(n)) \text { if there exist positive constants } c \text { and } n_{0} \text { such that } \\
& \left.0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\right\} .
\end{aligned}
$$

Informally, $f(n)=\Omega(g(n)$ means that $f(n)$ is asymptotically greater than or equal to $g(n)$.

big- Θ

$f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.
Informally, $f(n)=\Theta(g(n)$ means that $f(n)$ is asymptotically equal to $g(n)$.

INFORMAL summary

- $f(n)=O(g(n))$ roughly means $f(n) \leq g(n)$
- $f(n)=\Omega(g(n))$ roughly means $f(n) \geq g(n)$
- $f(n)=\Theta(g(n))$ roughly means $f(n)=g(n)$
- $f(n)=o(g(n))$ roughly means $f(n)<g(n)$
- $f(n)=w(g(n))$ roughly means $f(n)>g(n)$

We use these to classify algorithms into classes, e.g. $n, n^{2}, n \log n, 2^{n}$.
See chart for justification

3 useful formulas

Arithmetic series

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Geometric series

$$
\sum_{i=0}^{\infty} a^{i}=\frac{1}{1-a} \quad \text { for } 0<a<1
$$

Harmonic series

$$
\sum_{i=1}^{n} \frac{1}{i}=\ln n+O(1)=\Theta(\ln n)
$$

Algorithmic Correctness

- Very important, but we won't typically prove correctness from first principles.
- We will use loop invariants
- We will use other problem specific methods

Master Theorem

Master Theorem for Recurrences Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=a T(n / b)+f(n),
$$

where we interpret n / b to mean either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then $T(n)$ can be bounded asymptotically as follows.

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.
