Minimum Spanning Trees

- $G=(V, E)$ is an undirected graph with non-negative edge weights $w: E \rightarrow Z^{+}$
- We assume wlog that edge weights are distinct
- A spanning tree is a tree with $V-1$ edges, i.e. a tree that connects all the vertices.
- The total cost (weight) of a spanning tree \mathbf{T} is defined as $\Sigma e \in T w(e)$
- A minimum spanning tree is a tree of minimum total weight.

Minimum Spanning Trees

- $G=(V, E)$ is an undirected graph with non-negative edge weights $w: E \rightarrow Z^{+}$
- We assume wlog that edge weights are distinct
- A spanning tree is a tree with $V-1$ edges, i.e. a tree that connects all the vertices.
- The total cost (weight) of a spanning tree \mathbf{T} is defined as $\Sigma e \in T w(e)$
- A minimum spanning tree is a tree of minimum total weight.

Cuts

- A cut in a graph is a partition of the vertices into two sets S and T.
- An edge (u, v) with $u \in S$ and $v \in T$ is said to cross the cut.

Cuts

- A cut in a graph is a partition of the vertices into two sets S and T.
- An edge (u, v) with $u \in S$ and $v \in T$ is said to cross the cut .

Cuts

- A cut in a graph is a partition of the vertices into two sets S and T.
- An edge (u, v) with $u \in S$ and $v \in T$ is said to cross the cut.

Greedy Property

Recall that we assume all edges weights are unique.
Greedy Property: The minimum weight edge crossing a cut is in the minimum spanning tree.

Proof Idea: Assume not, then remove an edge crossing the cut and replace it with the minimum weight edge.

Restatement Lemma: Let $G=(V, E)$ be an undirected graph with edge weights w. Let $A \subseteq E$ be a set of edges that are part of a minimum spanning tree. Let (S, T) be a cut with no edges from A crossing it. Then the minimum weight edge crossing (S, T) can be added to A.

Algorithm Idea: Repeatedly choose an edge according to the Lemma, add to MST.

Challenge: Finding the edge to add.

Kruskal's Algorithm

Idea: Consider edges in increasing order.

MST-Kruskal (G, w)

$1 \quad A \leftarrow \emptyset$
2 for each vertex $v \in V[G]$
3 do Make-Set (v)
4 sort the edges of E into nondecreasing order by weight w
5 for each edge $(u, v) \in E$, taken in nondecreasing order by weight
6 do if $\operatorname{Find}-\operatorname{Set}(u) \neq \operatorname{Find}-\operatorname{Set}(v)$
$7 \quad$ then $A \leftarrow A \cup\{(u, v)\}$
$8 \quad \operatorname{Union}(u, v)$
9 return A

Exampe

Prim's Algorithm

Idea: Grow the MST from one node going out
$\operatorname{MST}-\operatorname{Prim}(G, w, r)$

1 for each $u \in V[G]$
$2 \quad$ do $k e y[u] \leftarrow \infty$ $\pi[u] \leftarrow \mathrm{NIL}$
$k e y[r] \leftarrow 0$
$Q \leftarrow V[G]$
while $Q \neq \emptyset$
do $u \leftarrow$ Extract-Min (Q)
for each $v \in A d j[u]$ do if $v \in Q$ and $w(u, v)<k e y[v]$ then $\pi[v] \leftarrow u$
$k e y[v] \leftarrow w(u, v)$

Exampe

