- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \dots k$.

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \dots k$.

Idea For each A[i] compute the number of elements less than or equal to A[i] use that to compute position.

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \dots k$.

Idea For each A[i] compute the number of elements less than or equal to A[i], and use that to compute position.

- Array A[1...n] holds input
- Array $C[1 \dots k] C[j]$ holds number of elements of A less than or equal to j

Example:

 index
 1
 2
 3
 4
 5
 6
 7
 8
 9

 A:
 2
 9
 1
 8
 6
 5
 5

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \dots k$.

Idea For each A[i] compute the number of elements less than or equal to A[i], and use that to compute position.

- Array A[1...n] holds input
- Array $C[1 \dots k] C[j]$ holds number of elements of A less than or equal to j

Example:

 index
 1
 2
 3
 4
 5
 6
 7
 8
 9

 A: 2
 9
 1
 8
 6
 5
 C: 1
 2
 2
 3
 4
 4
 5
 6

Questions

- How do we compute C
- We need to be careful dealing with duplicates (stability)

Counting Sort

Counting - Sort(A, B, k)for $i \leftarrow 0$ to k 1 2 do $C[i] \leftarrow 0$ 3 for $j \leftarrow 1$ to length[A]4 do $C[A[j]] \leftarrow C[A[j]] + 1$ $\triangleright C[i]$ now contains the number of elements equal to *i*. $\mathbf{5}$ for $i \leftarrow 1$ to k6 do $C[i] \leftarrow C[i] + C[i-1]$ 7 $\triangleright C[i]$ now contains the number of elements less than or equal to i. 8 for $j \leftarrow length[A]$ downto 1 9 do $B[C[A[j]]] \leftarrow A[j]$ 10 $C[A[j]] \leftarrow C[A[j]] - 1$ 11

Analysis

- Running Time O(n+k)
- No Comparisons
- Doesn't work on all data
- Good when k is small
- Examples?

Question: Is Counting Sort appropriate for alphabetizing the Columbia directory?

Radix Sort

Example

379 STABLE SORT	912	STABLE SORT	802	STABLE SORT	258
$912 \qquad \Rightarrow$	802	\Rightarrow	803	\Rightarrow	259
258	823		804		269
269	803		912		279
823	804		823		379
259	258		258		802
803	269		259		803
279	259		269		804
804	379		379		823
802	279		279		912