Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Idea For each $A[i]$ compute the number of elements less than or equal to $A[i]$ use that to compute position.

Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Idea For each $A[i]$ compute the number of elements less than or equal to $A[i]$, and use that to compute position.

- Array $A[1 \ldots n]$ - holds input
- Array $C[1 \ldots k]-C[j]$ holds number of elements of A less than or equal to j

Example:

$$
\begin{array}{rlllllllll}
\text { index } 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline A: 2 & 9 & 1 & 8 & 6 & 5 & &
\end{array}
$$

Sorting restricted ranges of numbers

- If the range is restricted, we can sort using more than comparisons and swaps.
- Assume each of the n input elements is an integer in the range $1 \ldots k$.

Idea For each $A[i]$ compute the number of elements less than or equal to $A[i]$, and use that to compute position.

- Array $A[1 \ldots n]$ - holds input
- Array $C[1 \ldots k]-C[j]$ holds number of elements of A less than or equal to j

Example:

$$
\begin{array}{rlllllllll}
\text { index } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline A: & 2 & 9 & 1 & 8 & 6 & 5 & & & \\
C: & 1 & 2 & 2 & 2 & 3 & 4 & 4 & 5 & 6
\end{array}
$$

Questions

- How do we compute C
- We need to be careful dealing with duplicates (stability)

Counting Sort

```
Counting - \(\operatorname{Sort}(A, B, k)\)
\(1 \quad\) for \(i \leftarrow 0\) to \(k\)
\(2 \quad\) do \(C[i] \leftarrow 0\)
3 for \(j \leftarrow 1\) to length \([A]\)
\(4 \quad\) do \(C[A[j]] \leftarrow C[A[j]]+1\)
\(\triangleright C[i]\) now contains the number of elements equal to \(i\).
for \(i \leftarrow 1\) to \(k\)
    do \(C[i] \leftarrow C[i]+C[i-1]\)
    \(\triangleright C[i]\) now contains the number of elements less than or equal to \(i\).
    for \(j \leftarrow\) length \([A]\) downto 1
    do \(B[C[A[j]]] \leftarrow A[j]\)
    \(C[A[j]] \leftarrow C[A[j]]-1\)
```


Analysis

- Running Time $O(n+k)$
- No Comparisons
- Doesn't work on all data
- Good when k is small
- Examples?

Question: Is Counting Sort appropriate for alphabetizing the Columbia directory?

Radix Sort

Radix - Sort (A,d)				
1 for $i \leftarrow 1$ to d				
2 do use a stable sort to sort array A on digit i				
Example				
379 STABLE SORT	912	STABLE SORT 802	STABLE SORT	258
$912 \quad \Rightarrow$	802	$\Rightarrow \quad 803$	\Rightarrow	259
258	823	804		269
269	803	912		279
823	804	823		379
259	258	258		802
803	269	259		803
279	259	269		804
804	379	379		823
802	279	279		912

