Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the n! possible permutations are equally likely.

RANDOMIZE-IN-PLACE(A)

1 $n \leftarrow length[A]$ 2 for $i \leftarrow 1$ to n3 do swap $A[i] \leftrightarrow A[\text{RANDOM}(i, n)]$

Lemma Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation.

Def Given a set of n elements, a k-permutation is a sequence containing k of the n elements.

There are n!/(n-k)! possible k-permutations of n elements

Proof via Loop invariant

We use the following loop invariant:

Just prior to the *i*th iteration of the for loop of lines 2–3, for each possible (i-1)-permutation, the subarray A[1 ... i-1] contains this (i-1)-permutation with probability (n - i + 1)!/n!.

Initialization

RANDOMIZE-IN-PLACE(A)

Just prior to the *i*th iteration of the for loop of lines 2–3, for each possible (i-1)-permutation, the subarray A[1 ... i-1] contains this (i-1)-permutation with probability (n-i+1)!/n!.

Initialization Consider the situation just before the first loop iteration, so that i = 1. The loop invariant says that for each possible 0-permutation, the subarray A[1..0] contains this 0-permutation with probability (n - i + 1)!/n! = n!/n! = 1. The subarray A[1..0] is an empty subarray, and a 0-permutation has no elements. Thus, A[1..0] contains any 0-permutation with probability 1, and the loop invariant holds prior to the first iteration.

Maintenance

RANDOMIZE-IN-PLACE(A)

Just prior to the *i*th iteration of the for loop of lines 2–3, for each possible (i-1)-permutation, the subarray A[1 ... i-1] contains this (i-1)-permutation with probability (n - i + 1)!/n!.

Maintenance We assume that just before the (i-1)st iteration, each possible (i-1)-permutation appears in the subarray A[1 ... i - 1] with probability (n-i+1)!/n!, and we will show that after the *i*th iteration, each possible *i*-permutation appears in the subarray A[1...i] with probability (n-i)!/n!. Incrementing *i* for the next iteration will then maintain the loop invariant.

Let us examine the *i*th iteration. Consider a particular *i*-permutation, and denote the elements in it by $\langle x_1, x_2, \ldots, x_i \rangle$. This permutation consists of an (i-1)-permutation $\langle x_1, \ldots, x_{i-1} \rangle$ followed by the value x_i that the algorithm places in A[i]. Let E_1 denote the event in which the first i-1iterations have created the particular (i-1)-permutation $\langle x_1, \ldots, x_{i-1} \rangle$ in $A[1 \ldots i-1]$. By the loop invariant, $\Pr(E_1) = (n-i+1)!/n!$. Let E_2 be the event that *i*th iteration puts x_i in position A[i]. The *i*-permutation $\langle x_1, \ldots, x_i \rangle$ is formed in $A[1 \ldots i]$ precisely when both E_1 and E_2 occur, and so we wish to compute $\Pr(E_2 \cap E_1)$. Using equation ??, we have

$$\mathbf{Pr}(E_2 \cap E_1) = \mathbf{Pr}(E_2 \mid E_1)\mathbf{Pr}(E_1) \ .$$

The probability $Pr(E_2 | E_1)$ equals 1/(n-i+1) because in line 3 the algorithm chooses x_i randomly from the n-i+1 values in positions $A[i \dots n]$. Thus, we have

$$\mathbf{Pr}(E_2 \cap E_1) = \mathbf{Pr}(E_2 \mid E_1)\mathbf{Pr}(E_1) \\
= \frac{1}{n-i+1} \cdot \frac{(n-i+1)!}{n!} \\
= \frac{(n-i)!}{n!} .$$

Termination

RANDOMIZE-IN-PLACE(A)

Just prior to the *i*th iteration of the for loop of lines 2–3, for each possible (i-1)-permutation, the subarray A[1 ... i-1] contains this (i-1)-permutation with probability (n - i + 1)!/n!.

Termination At termination, i = n + 1, and we have that the subarray A[1..n] is a given *n*-permutation with probability (n - n)!/n! = 1/n!.