Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the n ! possible permutations are equally likely.

```
Randomize-In-Place(A)
```

$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{RANDOM}(i, n)]$

Lemma Procedure Randomize-In-Place computes a uniform random permutation.

Def Given a set of n elements, a k-permutation is a sequence containing k of the n elements.

There are $n!/(n-k)$! possible k-permutations of n elements

Proof via Loop invariant

We use the following loop invariant:
Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Initialization

Randomize-In-Place(A)
$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{Random}(i, n)]$

Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Initialization Consider the situation just before the first loop iteration, so that $i=1$. The loop invariant says that for each possible 0 -permutation, the subarray $A[1 . .0]$ contains this 0 -permutation with probability $(n-i+$ $1)!/ n!=n!/ n!=1$. The subarray $A[1 \ldots 0]$ is an empty subarray, and a $0-$ permutation has no elements. Thus, $A[1 \ldots 0]$ contains any 0 -permutation with probability 1 , and the loop invariant holds prior to the first iteration.

Maintenance

Randomize-In-Place(A)
$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{Random}(i, n)]$

Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Maintenance We assume that just before the $(i-1)$ st iteration, each possible ($i-1$)-permutation appears in the subarray $A[1 \ldots i-1]$ with probability $(n-i+1)!/ n!$, and we will show that after the i th iteration, each possible i-permutation appears in the subarray $A[1 \ldots i]$ with probability $(n-i)!/ n!$. Incrementing i for the next iteration will then maintain the loop invariant.

Let us examine the i th iteration. Consider a particular i-permutation, and denote the elements in it by $<x_{1}, x_{2}, \ldots, x_{i}>$. This permutation consists of an $(i-1)$-permutation $<x_{1}, \ldots, x_{i-1}>$ followed by the value x_{i} that the algorithm places in $A[i]$. Let E_{1} denote the event in which the first $i-1$ iterations have created the particular $(i-1)$-permutation $<x_{1}, \ldots, x_{i-1}>$ in $A[1 \ldots i-1]$. By the loop invariant, $\operatorname{Pr}\left(E_{1}\right)=(n-i+1)!/ n!$. Let E_{2} be the event that i th iteration puts x_{i} in position $A[i]$. The i-permutation $<x_{1}, \ldots, x_{i}>$ is formed in $A[1 \ldots i]$ precisely when both E_{1} and E_{2} occur, and so we wish to compute $\operatorname{Pr}\left(E_{2} \cap E_{1}\right)$. Using equation ??, we have

$$
\operatorname{Pr}\left(E_{2} \cap E_{1}\right)=\operatorname{Pr}\left(E_{2} \mid E_{1}\right) \operatorname{Pr}\left(E_{1}\right)
$$

The probability $\operatorname{Pr}\left(E_{2} \mid E_{1}\right)$ equals $1 /(n-i+1)$ because in line 3 the algorithm chooses x_{i} randomly from the $n-i+1$ values in positions $A[i \ldots n]$. Thus, we have

$$
\begin{aligned}
\operatorname{Pr}\left(E_{2} \cap E_{1}\right) & =\operatorname{Pr}\left(E_{2} \mid E_{1}\right) \operatorname{Pr}\left(E_{1}\right) \\
& =\frac{1}{n-i+1} \cdot \frac{(n-i+1)!}{n!} \\
& =\frac{(n-i)!}{n!} .
\end{aligned}
$$

Termination

Randomize-In-Place(A)
$1 \quad n \leftarrow$ length $[A]$
2 for $i \leftarrow 1$ to n
3 do swap $A[i] \leftrightarrow A[\operatorname{Random}(i, n)]$

Just prior to the i th iteration of the for loop of lines $2-3$, for each possible ($i-1$)-permutation, the subarray $A[1 \ldots i-1]$ contains this $(i-1)$-permutation with probability $(n-i+1)!/ n!$.

Termination At termination, $i=n+1$, and we have that the subarray $A[1 \ldots n]$ is a given n-permutation with probability $(n-n)!/ n!=1 / n!$.

