
Producing a Uniform Random Permutation

Def: A uniform random permutation is one in which each of the n!

possible permutations are equally likely.

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Lemma Procedure Randomize-In-Place computes a uniform random per-

mutation.

Def Given a set of n elements, a k-permutation is a sequence containing k

of the n elements.

There are n!/(n− k)! possible k-permutations of n elements



Proof via Loop invariant

We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.



Initialization

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.

Initialization Consider the situation just before the first loop iteration, so

that i = 1. The loop invariant says that for each possible 0-permutation,

the subarray A[1 . . 0] contains this 0-permutation with probability (n − i +

1)!/n! = n!/n! = 1. The subarray A[1 . . 0] is an empty subarray, and a 0-

permutation has no elements. Thus, A[1 . . 0] contains any 0-permutation

with probability 1, and the loop invariant holds prior to the first iteration.



Maintenance

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.

Maintenance We assume that just before the (i−1)st iteration, each possible

(i − 1)-permutation appears in the subarray A[1 . . i − 1] with probability

(n− i + 1)!/n!, and we will show that after the ith iteration, each possible

i-permutation appears in the subarray A[1 . . i] with probability (n − i)!/n!.

Incrementing i for the next iteration will then maintain the loop invariant.



Let us examine the ith iteration. Consider a particular i-permutation,

and denote the elements in it by < x1, x2, . . . , xi >. This permutation consists

of an (i − 1)-permutation < x1, . . . , xi−1 > followed by the value xi that the

algorithm places in A[i]. Let E1 denote the event in which the first i − 1

iterations have created the particular (i− 1)-permutation < x1, . . . , xi−1 > in

A[1 . . i−1]. By the loop invariant, Pr(E1) = (n− i+1)!/n!. Let E2 be the event

that ith iteration puts xi in position A[i]. The i-permutation < x1, . . . , xi >

is formed in A[1 . . i] precisely when both E1 and E2 occur, and so we wish

to compute Pr(E2 ∩ E1). Using equation ??, we have

Pr(E2 ∩ E1) = Pr(E2 | E1)Pr(E1) .

The probability Pr(E2 | E1) equals 1/(n−i+1) because in line 3 the algorithm

chooses xi randomly from the n− i + 1 values in positions A[i . . n]. Thus, we

have

Pr(E2 ∩ E1) = Pr(E2 | E1)Pr(E1)

=
1

n− i + 1
· (n− i + 1)!

n!

=
(n− i)!

n!
.



Termination

Randomize-In-Place(A)

1 n← length[A]

2 for i← 1 to n

3 do swap A[i]↔ A[Random(i, n)]

Just prior to the ith iteration of the for loop of lines 2– 3, for each possible

(i−1)-permutation, the subarray A[1 . . i−1] contains this (i−1)-permutation

with probability (n− i + 1)!/n!.

Termination At termination, i = n + 1, and we have that the subarray

A[1 . . n] is a given n-permutation with probability (n− n)!/n! = 1/n!.


