Shortest Paths

- Input: weighted, directed graph $G=(V, E)$, with weight function w : $E \rightarrow \mathbf{R}$.
- The weight of path $p=<v_{0}, v_{1}, \ldots, v_{k}>$ is the sum of the weights of its constituent edges:

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) .
$$

- The shortest-path weight from u to v is

$$
\delta(u, v)= \begin{cases}\min \{w(p)\} & \text { if there is a path } p \text { from } u \text { to } v \\ \infty & \text { otherwise } .\end{cases}
$$

- A shortest path from vertex u to vertex v is then defined as any path p with weight $w(p)=\delta(u, v)$.

Example

Solution

Shortest Paths

Shortest Path Variants

- Single Source-Single Sink
- Single Source (all destinations from a source s)
- All Pairs

Defs:

- Let $\delta(v)$ be the real shortest path distance from s to v
- Let $d(v)$ be a value computed by an algorithm

Edge Weights

- All non-negative
- Arbitrary

Note: Must have no negative cost cycles

Single Source Shortest Paths

Key Property: Subpaths of shortest paths are shortest paths Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbf{R}$, let $p=<v_{1}, v_{2}, \ldots, v_{k}>$ be a shortest path from vertex v_{1} to vertex v_{k} and, for any i and j such that $1 \leq i \leq j \leq k$, let $p_{i j}=<v_{i}, v_{i+1}, \ldots, v_{j}>$ be the subpath of p from vertex v_{i} to vertex v_{j}. Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.

Note: this is optimal substructure
Corollary 1 For all edges $(u, v) \in E$,

$$
\delta(v) \leq \delta(u)+w(u, v)
$$

Corollary 2 Shortest paths follow a tree of edges for which

$$
\delta(v)=\delta(u)+w(u, v)
$$

More precisely, any edge in a shortest path must satisfy

$$
\delta(v)=\delta(u)+w(u, v)
$$

Relaxation

```
\(\operatorname{Relax}(u, v, w)\)
\(1 \quad\) if \(d[v]>d[u]+w(u, v)\)
\(2 \quad\) then \(d[v] \leftarrow d[u]+w(u, v)\)
\(3 \pi[v] \leftarrow u\) (keep track of actual path)
```

Lemma: Assume that we initialize all $d(v)$ to $\infty, d(s)=0$ and execute a series of Relax operations. Then for all $v, d(v) \geq \delta(v)$.

Lemma: Let $P=e_{1}, \ldots, e_{k}$ be a shortest path from s to v. After initialization, suppose that we relax the edges of P in order (but not necessarily consecutively). Then $d(v)=\delta(v)$.

Example

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but not necessarily consecutively).

Algorithms

Goal of an algorithm: Relax the edges in a shortest path in order (but not necessarily consecutively).

Bellman-Ford (G, w, s)
1 Initialize-Single-Source (G, s)
$2 \quad$ for $i \leftarrow 1$ to $|V[G]|-1$
3 do for each edge $(u, v) \in E[G]$
4 do $\operatorname{Relax}(u, v, w)$
5 for each edge $(u, v) \in E[G]$
$6 \quad$ do if $d[v]>d[u]+w(u, v)$
7 then return FALSE
8 return true

Initialize - Single - Source (G, s)
1 for each vertex $v \in V[G]$
$2 \quad$ do $d[v] \leftarrow \infty$
$3 \quad \pi[v] \leftarrow$ NIL
$4 \quad d[s] \leftarrow 0$

Example

Correctness of Bellman Ford

- Every shortest path must be relaxed in order
- If there are negative weight cycles, the algorithm will return false

Running Time $O(V E)$

All edges non-negative

- Dijkstra's algorithm, a greedy algorithm
- Similar in spirit to Prim's algorithm
- Idea: Run a discrete event simulation of breadth-first-search. Figure out how to implement it efficiently
- Can relax edges out of each vertex exactly once.

Dijkstra (G, w, s)
1 Initialize-Single-Source (G, s)
$2 \quad S \leftarrow \emptyset$
$3 \quad Q \leftarrow V[G]$
4 while $Q \neq \emptyset$
$5 \quad$ do $u \leftarrow$ Extract- $\operatorname{Min}(Q)$
$6 \quad S \leftarrow S \cup\{u\}$
$7 \quad$ for each vertex $v \in \operatorname{Adj}[u]$
8
do $\operatorname{Relax}(u, v, w)$

Example

Running Time and Correctness

Correctness of Dijkstra's algorithm Dijkstra's algorithm, run on a weighted, directed graph $G=(V, E)$ with nonnegative weight function w and source s, terminates with $d[u]=\delta(s, u)$ for all vertices $u \in V$.

- E decrease keys and V delete-min's
- $O(E \log V)$ using a heap
- $O(E+V \log V)$ using a Fibonacci heap

Shortest Path in a DAG

Dag-Shortest-Paths (G, w, s)
1 topologically sort the vertices of G
2 Initialize-Single-Source' (G, s)
3 for each u taken in topological order
$4 \quad$ do for each $v \in \operatorname{Adj}[u]$
5 do $\operatorname{Relax}(u, v, w)$

Example

Correctness and Running Time

Correctness If a weighted, directed graph $G=(V, E)$ has source vertex s and no cycles, then at the termination of the Dag-Shortest-Paths procedure, $d[v]=\delta(s, v)$ for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

Running Time

- Topological sort is linear time
- Each edge is relaxed once
- No additional data structure overhead $O(V+E)$ time.

