Homework solution #10, IEOR E3608 Intro. to Mathematical Programming

1. page 411, A6

Node i=beginning of year i, i=1,2...7 (Note: beginning of year 7=end of year 6) $c_{12} = 60, c_{13} = 90, c_{14} = 130, c_{15} = 190, c_{16} = 260, c_{23} = 60,$ $c_{24} = 90, c_{25} = 130, c_{26} = 190, c_{27} = 260, c_{34} = 60, c_{35} = 90,$ $c_{36} = 130, c_{37} = 190, c_{45} = 60, c_{46} = 90, c_{47} = 130, c_{56} = 60,$ $c_{57} = 90, c_{67} = 60.$

2. page 412, A10

For a networ with N nodes,1,2,...,N. We create a node 0 with net supply of N-1 units and create an arc (0,1).We give node 1 a net supply of 0 and nodes 2,3,...,N a net demand of 1. In the optimal solution for this transshipment problem, the single unit shipped from node 1 to node i will be shipped along the shortest path from node 1 to node i; if the single unit shipped from node 1 to node i in the "optimal solution" was not shipped along the shortest path from node 1 to node i, then by transferring this unit to the shortest path from node 1 to node i would give ua a better solution to the transshipment problem, thereby contradicting the assumed optimality of our current solution.

3. page 424, figure 22

maximum flow=9. min cut set={2,4,si}. Capacity of cut=3+1+3+2=9. SEE FIGURE.

4. page 424, B12

Construct a "supersource" that has arcs of infinite capacity leading to each real source. Also construct a "supersink" that has infinite capacity arcs leading from each real sink to the supersink.

5. page 424, B16

There are 4 month-nodes and 3 project-nodes. All arcs from month i to project j have a capacity of 6. Project 1 has connection with month 1,2,3. Project 2 has connection with month 1,2,3,4. Project 3 has connection with month 1,2. Source node has arcs to all month-nodes with capacity 8. All project-nodes have arcs to sink node.

All projects can be completed if and only if the maximum flow from source to sink equals 30.

6. page453, A3

Node	NetOutflow
Detroit	6500
Dallas	6000
City1	-5000
City2	-4000
City3	-3000
dummy	-500

All arcs from Detroit or Dallas to city 1, 2, 3 have a capacity of 2200. Other arcs have infinite capacity.

Arc	ShippingCost
Detroit-city1	2800
Detroit-city2	2600
Detroit - city3	2300
Detroit – dummy	0
Dallas - city1	2300
Dallas - city2	2000
Dallas - city3	2000
Dallas - dummy	0

- 7. page 459, B4
 - (a) clearly MST has length 1+1=2.
 - (b) See picture below. Length of MST=AD+DC+DB=3DC= $\sqrt{3} < 2$.

SEE FIGURE

8. page 454, B7 SEE FIGURE.