Definition of a Linear Program

Definition: A function $f(x_1, x_2, ..., x_n)$ of $x_1, x_2, ..., x_n$ is a linear function if and only if for some set of constants $c_1, c_2, ..., c_n$,

$$f(x_1, x_2, \ldots, x_n) = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$
.

Examples:

- x_1
- $5x_1 + 6x_4 2x_2 + 1$
- 3

Non-examples:

- x_1^2
- $x_1 + 3x_2 4x_3^4$
- x_1x_2

Linear Inequalities

Definition: For any linear function $f(x_1, x_2, ..., x_n)$ and any number *b*, the inequalities

 $f(x_1, x_2, \dots, x_n) \le b$

and

 $f(x_1, x_2, \ldots, x_n) \ge b$

are linear inequalities.

Examples:

- $\bullet x_1 + x_2 \le 4$
- $\bullet \ 5x_1 4 \ge 0$

Note: If an inequality can be rewritten as a linear inequality then it is one. Thus $x_1 + x_2 \leq 3x_3$ is a linear inequality because it can be rewritten as $x_1 + x_2 - 3x_3 \leq 0$. Even $x_1/x_2 \leq 4$ is a linear inequality because it can be rewritten as $x_1 - 4x_2 \leq 0$. Note that $x_1/x_2 + x_3 \leq 4$ is not a linear inequality, however.

Definition: For any linear function $f(x_1, x_2, ..., x_n)$ and any number b, the equality

$$f(x_1, x_2, \dots, x_n) = b$$

is a linear equality.

<u>LPs</u>

Definition: A linear programming problem (LP) is an optimization problem for which:

- 1. We attempt to maximize (or minimize) a linear function of the decision variables. (objective function)
- 2. The values of the decision variables must satisfy a set of constraints, each of which must be a linear inequality or linear equality.
- 3. A sign restriction on each variable. For each variable x_i the sign restriction can either say
 - (a) $x_i \ge 0$,
 - (b) $x_i \leq 0$,
 - (c) x_i unrestricted (urs).

Definition: A solution to a linear program is a setting of the variables.

Definition: A feasible solution to a linear program is a solution that satisfies all constraints.

Definition: The feasible region in a linear program is the set of all possible feasible solutions.

Definition: An optimal solution to a linear program is the feasible solution with the largest objective function value (for a maximization problem).

Modeling Assumptions for Linear Programming

- Prportionality. If one item brings in a profit of x, then k items bring in a profit of kx. If one item use y units of resource R then k items use ky units of resource R.
- Additivity. The decisions made are independent, except as noted in the constraints. So, if we sell more trains, this does not decrease the demand for soldiers, in the Giapeto model.
- Divisibility. Decision variables can take on fractional values.
- Certainty. The values of various parameters are known with certainty.

Comments:

- Whether these assumptions hold is a feature of the model, not of linear programming itself.
- They often do not hold.
- They may be close to holding, or may hold in the region we are about: e.g.
 - proportionally and additivity may hold in the feasible region
 - divisibility may not hold, but the conclusions of the model will be approximately sound anyway

– certainty may not hold, but we may have good estimates

Whenever we solve a model using linear programming, we should be aware of these assumptions, and ask ourselves whether they hold, and whether the solution makes sense.