Survivor Game

Let f(z) be the outcome, if you start at x.
Let m(x) be the optimal, move if you start

o
=3
]

number left | f(z) | m(x)

1 W 1

2 W 2

3 W 3

4 L anything
5 W 1

6 W 2

7 W 3

8 L anything
9 W 1

10 W 2

11 W 3

12 L anything
13 W 1

14 W 2

15 W 3

16 L anything
17 W 1

18 W 2

19 W 3

20 L anything
21 W 1

We can develop a recurrence for the win/loss function.

W ifr=123
flz)=19 L if x =4
f(x —4) otherwise

m(z) will be the move that takes you to the place described by the f function.

Scheduling Problem

Producing DVD’s of the TV show survivor is a four step process. Probstco has two
assembly lines that perform the process. The times are listed below. (We use ¢;(x) to
denote the processing time of line z at step t.

Step | Time on Line 1 | Time on Line 2
1 60 65
2 65 45
3 45 40
4 30 35

A DVD can switch between the two assembly lines, but it takes 10 minutes to switch
between lines. It takes no time to progress along the same line.

Figure out a sequence which minimizes the total time.

Solution

It’s not clear how to work from the beginning, but it’s easier to think about working
backwards from the end.

Let fi(x) be the fastest time from step ¢ to the end, starting on line x.

How do we compute the other values? We use the already computed values of f for
larger values of t.

Think about f3(1). There are two possibilities for the fastest time to the end. You
either stay on machine 1 next, or switch to machine 2. If you stay on 1, the total time is
45 + 30 = 75, if you switch, the time is 454 10 4+ 35 = 85. So you would choose to stay on
line 1.

In symbols

f3(1) = min{es(1) + f4(1),c3(1) + 10 + f4(2)}.

Symmetrically,

f3(2) e min{03(2) + f4(2), 63(2) + 10 + f4(1)}

In general,

fi(x) = min{e(z) + fria (), ce(2) + 10 + frpa (3 —2)}.

We can fill in a table, using this formula.

Step ft(l) ft(2)
1 190 185

2 140 | 120
3 75 75
4 30 35

So the shortest time starting on line 1 is 190, and the shortest starting on line 2 is 185.
One can trace back and figure out how the decisions where made.

Dynamic Programming

Dynamic Programming is a technique for solving problems with certain features. These
are:

e The problem has a series of stages, each with an associated decision.
e Each stage has a number of states associated with it.
e The decision at each stage descirbes which state to choose next.

e Given a particular state, future decisions do not depend on anything except that
state. They do not depend on how the state was reached, or previous states along
the path. (optimal substructure)

e The number of states and stages is limited.

Inventory Problem

A state can be defined by the inventory and the period.

Let f;(i) be the minimum cost of meeting demands for months ¢,¢ + 1,...,4 starting
with inventory ¢ at the beginning of month ¢.

We work backwards, starting with period 4. The demand for the this period is 4.

If we have zero inventory, we have to pay a fixed cost of 3 plus the cost of producing 4
units.

fi0)=3+4+4=7

For larger inventories we have smaller costs:

f1(0)=3+4=7
f1(1)=3+3=
f1(2)=3+2=
f1(3)=3+1=
fa(4) =0

Note that for an inventory of 4 we don’t have any costs. This makes the problem
non-linear.

We can start to fill in a table:

i/t[1 2 3 4
0 7
1 6
2 5
3 4
4 0

Now let’s think about f3(0). We must satisfy the demand of 2, but we now have
choices, because we can end up with different inventory amounts. How do we evaluate
these different inventory amounts? We use the entries f4(), which tell us the cost, in
period 4 starting with a particular inventory amount.

We make a table:

left over 0 1 2 3 4

number produced | 2 3 4 5 impossible
production cost 5 6 7 8

inventory cost 0 5) 1 1.5

fa(inventory) 7 6 5 4

total cost 12 125 13 13.5

Thus the best strategy is to produce 2 and end the period with no inventory.

Now let’s think about f3(1). We must satisfy the demand of 2, but we now have
choices, because we can end up with different inventory amounts. How do we evaluate
these different inventory amounts? We use the entries fy(), which tell us the cost, in
period 4 starting with a particular inventory amount.

We make a table:

left over 0 1 2 3 4
number produced | 1 2 3 4)
production cost 4 5 6 7 8
inventory cost 0 .5 1 15 2
fa(inventory) 7 6 5 4 0
total cost 11 115 12 125 10

Notice that now the optimal policy is to produce 5 and end the period with an inventory
of 4.

Consider now f3(2). Let’s make a similar table.

left over

number produced
production cost
inventory cost
f4(inventory)
total cost

~N| g O OO O

Notice that now the optimal policy is to produce 0 and end the period with an inventory

of 0.

We can compute f3(3) and f3(4) similarly and fill in the master table more.

i/t]1 2 3 4
0 12 7
1 10 6
2 75
3 6.5 4
4 6 0

We now continue similarly for fo(). We'll do f2(0).

left over 0 1 2 3 4

number produced | 3 4 5 impossible impossible
production cost 7 8 9

inventory cost 0 5 1

f3(inventory) 12 10 7

total cost 18 17.5 16

So the optimal policy is to manufacture 5 and end with an inventory of 2.
Notice that to compute f5(), we used f3() but not f4(). This is why DP is so efficient!

In general, we have a recurrence:

fi(t) = min {;(z + 2 — demand(t)) + prod-cost(x) + fiy1(i + 2 — demand(t))}

With appropriate boundary conditions. We can continue and fill in the entire master
table.

i/t]1 2 3 4
0 |20 16 12 7
1 |16 15 10 6
2 [155 14 7 5
3 (15 12 65 4
4 [135 105 6 0

The bold entry represent the optimal choices. These correspond to producing 1, 5,0, 4.

