Survivor Game

Let $f(x)$ be the outcome, if you start at x.
Let $m(x)$ be the optimal, move if you start at x.

number left	$f(x)$	$m(x)$
1	W	1
2	W	2
3	W	3
4	L	anything
5	W	1
6	W	2
7	W	3
8	L	anything
9	W	1
10	W	2
11	W	3
12	L	anything
13	W	1
14	W	2
15	W	3
16	L	anything
17	W	1
18	W	2
19	W	3
20	L	anything
21	W	1

We can develop a recurrence for the win/loss function.

$$
f(x)= \begin{cases}W & \text { if } x=1,2,3 \\ L & \text { if } x=4 \\ f(x-4) & \text { otherwise }\end{cases}
$$

$m(x)$ will be the move that takes you to the place described by the f function.

Scheduling Problem

Producing DVD's of the TV show survivor is a four step process. Probstco has two assembly lines that perform the process. The times are listed below. (We use $c_{t}(x)$ to denote the processing time of line x at step t.

Step	Time on Line 1	Time on Line 2
1	60	65
2	65	45
3	45	40
4	30	35

A DVD can switch between the two assembly lines, but it takes 10 minutes to switch between lines. It takes no time to progress along the same line.

Figure out a sequence which minimizes the total time.

Solution

It's not clear how to work from the beginning, but it's easier to think about working backwards from the end.

Let $f_{t}(x)$ be the fastest time from step t to the end, starting on line x.
$f_{4}(1)=30$
$f_{4}(2)=35$

How do we compute the other values? We use the already computed values of f for larger values of t.

Think about $f_{3}(1)$. There are two possibilities for the fastest time to the end. You either stay on machine 1 next, or switch to machine 2 . If you stay on 1 , the total time is $45+30=75$, if you switch, the time is $45+10+35=85$. So you would choose to stay on line 1.

In symbols

$$
f_{3}(1)=\min \left\{c_{3}(1)+f_{4}(1), c_{3}(1)+10+f_{4}(2)\right\} .
$$

Symmetrically,

$$
f_{3}(2)=\min \left\{c_{3}(2)+f_{4}(2), c_{3}(2)+10+f_{4}(1)\right\} .
$$

In general,

$$
f_{t}(x)=\min \left\{c_{t}(x)+f_{t+1}(x), c_{t}(x)+10+f_{t+1}(3-x)\right\} .
$$

We can fill in a table, using this formula.

Step	$f_{t}(1)$	$f_{t}(2)$
1	190	185
2	140	120
3	75	75
4	30	35

So the shortest time starting on line 1 is 190 , and the shortest starting on line 2 is 185 . One can trace back and figure out how the decisions where made.

Dynamic Programming

Dynamic Programming is a technique for solving problems with certain features. These are:

- The problem has a series of stages, each with an associated decision.
- Each stage has a number of states associated with it.
- The decision at each stage descirbes which state to choose next.
- Given a particular state, future decisions do not depend on anything except that state. They do not depend on how the state was reached, or previous states along the path. (optimal substructure)
- The number of states and stages is limited.

Inventory Problem

A state can be defined by the inventory and the period.
Let $f_{t}(i)$ be the minimum cost of meeting demands for months $t, t+1, \ldots, 4$ starting with inventory i at the beginning of month t.

We work backwards, starting with period 4 . The demand for the this period is 4 .
If we have zero inventory, we have to pay a fixed cost of 3 plus the cost of producing 4 units.

$$
f_{4}(0)=3+4=7
$$

For larger inventories we have smaller costs:

$$
\begin{gathered}
f_{4}(0)=3+4=7 \\
f_{4}(1)=3+3=6 \\
f_{4}(2)=3+2=5 \\
f_{4}(3)=3+1=4 \\
f_{4}(4)=0
\end{gathered}
$$

Note that for an inventory of 4 we don't have any costs. This makes the problem non-linear.

We can start to fill in a table:

i / t	1	2	3	4
0				7
1				6
2				5
3				4
4				0

Now let's think about $f_{3}(0)$. We must satisfy the demand of 2 , but we now have choices, because we can end up with different inventory amounts. How do we evaluate these different inventory amounts? We use the entries $f_{4}()$, which tell us the cost, in period 4 starting with a particular inventory amount.

We make a table:

left over	0	1	2	3	4
number produced	2	3	4	5	impossible
production cost	5	6	7	8	
inventory cost	0	.5	1	1.5	
f_{4} (inventory)	7	6	5	4	
total cost	12	12.5	13	13.5	

Thus the best strategy is to produce 2 and end the period with no inventory.
Now let's think about $f_{3}(1)$. We must satisfy the demand of 2 , but we now have choices, because we can end up with different inventory amounts. How do we evaluate these different inventory amounts? We use the entries $f_{4}()$, which tell us the cost, in period 4 starting with a particular inventory amount.

We make a table:

left over	0	1	2	3	4
number produced	1	2	3	4	5
production cost	4	5	6	7	8
inventory cost	0	.5	1	1.5	2
f_{4} (inventory)	7	6	5	4	0
total cost	11	11.5	12	12.5	10

Notice that now the optimal policy is to produce 5 and end the period with an inventory of 4 .

Consider now $f_{3}(2)$. Let's make a similar table.

left over	0	1	2	3	4
number produced	0	1	2	3	4
production cost	0	4	5	6	7
inventory cost	0	.5	1	1.5	2
f_{4} (inventory)	7	6	5	4	0
total cost	7	10.5	11	11.5	9

Notice that now the optimal policy is to produce 0 and end the period with an inventory of 0 .

We can compute $f_{3}(3)$ and $f_{3}(4)$ similarly and fill in the master table more.

i/t	1	2	3	4
0			12	7
1			10	6
2			7	5
3			6.5	4
4			6	0

We now continue similarly for $f_{2}()$. We'll do $f_{2}(0)$.

left over	0	1	2	3	4
number produced	3	4	5	impossible	impossible
production cost	7	8	9		
inventory cost	0	.5	1		
f_{3} (inventory)	12	10	7		
total cost	18	17.5	16		

So the optimal policy is to manufacture 5 and end with an inventory of 2 .
Notice that to compute $f_{2}()$, we used $f_{3}()$ but not $f_{4}()$. This is why DP is so efficient!
In general, we have a recurrence:

$$
f_{t}(t)=\min _{x}\left\{\frac{1}{2}(i+x-\operatorname{demand}(t))+\operatorname{prod}-\operatorname{cost}(x)+f_{t+1}(i+x-\operatorname{demand}(t))\right\}
$$

With appropriate boundary conditions. We can continue and fill in the entire master table.

i / t	1	2	3	4
0	$\mathbf{2 0}$	$\mathbf{1 6}$	12	$\mathbf{7}$
1	16	15	10	6
2	15.5	14	$\mathbf{7}$	5
3	15	12	6.5	4
4	13.5	10.5	6	0

The bold entry represent the optimal choices. These correspond to producing 1,5, 0, 4 .

