Solution to BreadCo

Variables

- x_1 loaves of French Bread baked
- x_2 loaves of Sourdough Bread baked
- x_3 packets of yeast bought
- x_4 oz. of flour bought

Objective:

 $\max 36x_1 + 30x_2 - 3x_3 - 4x_4$

Constraints:

yeast used \leq yeast on hand

$$x_1 + x_2 \le x_3 + 5$$

flower used \leq flower on hand

$$6x_1 + 5x_2 \le x_4 + 10$$

Nonnegativity: all variables

$\underline{\mathbf{LP}}$

maximize $36x_1 + 30x_2 - 3x_3 - 4x_4$ (1) **subject to**

$$x_1 + x_2 - x_3 \leq 5 \tag{2}$$

$$6x_1 + 5x_2 - x_4 \le 10$$
 (3)

$$x_1 , x_2 , x_3 , x_4 \ge 0$$
 (4)

Put into standard form:

$$z = 36x_1 + 30x_2 - 3x_3 - 4x_4$$
(5)

$$s_1 = 5 - x_1 - x_2 + x_3$$
(6)

$$s_2 = 10 - 6x_1 - 5x_2 + x_4$$
(7)

Choose x_1 to enter Choose s_2 to exit

Iteration 1

$$z = 36x_1 + 30x_2 - 3x_3 - 4x_4$$
(8)

$$s_1 = 5 - x_1 - x_2 + x_3$$
(9)

$$s_2 = 10 - 6x_1 - 5x_2 + x_4 \tag{10}$$

Choose x_1 to enter Choose s_2 to exit

$$z = 60 - 6s_2 - 3x_3 + 2x_4$$

$$x_1 = \frac{5}{3} - \frac{s_2}{6} - \frac{5}{6}x_2 + \frac{x_4}{6}$$
(11)
(12)
(12)

$$s_2 = \frac{10}{3} + \frac{2}{6} - \frac{2}{6} + x_3 - \frac{1}{6}$$
(13)

Choose x_4 to enter Choose s_1 to exit

Iteration 2

$$z = 60 - 6s_{2} - 3x_{3} + 2x_{4}$$

$$x_{1} = \frac{5}{3} - \frac{s_{2}}{6} - \frac{5}{6}x_{2} + \frac{x_{4}}{6}$$

$$s_{2} = \frac{10}{3} + \frac{s_{2}}{6} - \frac{x_{2}}{6} + x_{3} - \frac{x_{4}}{6}$$

$$(14)$$

$$(15)$$

$$(15)$$

$$(16)$$

Choose x_4 to enter Choose s_1 to exit

$$z = 100 - 4s_2 - 2x_2 + 9x_3 - 12s_1$$

$$x_1 = 5 - x_2 + x_3 - s_1$$

$$x_4 = 20 + s_2 - x_2 + 6x_3 - 6s_1$$
(17)
(17)
(18)
(19)

Iteration 3

$$z = 100 - 4s_2 - 2x_2 + 9x_3 - 12s_1$$

$$x_1 = 5 - x_2 + x_3 - s_1$$
(20)
(21)

$$x_4 = 20 + s_2 - x_2 + 6x_3 - 6s_1 \tag{22}$$

Choose x_3 to enter. Nothing limits its increase!! Therefore, this LP is unbounded.

Note that it even gives us a particular unbounded solution. If we set $x_3 = L$, where L is a large number, $x_2, s_1, s_2 = 0$, and then use the equations to set $x_1 = L + 5$ and $x_4 = 6L + 20$,

Solution

we can go back to the original LP :

maximize
$$36x_1 + 30x_2 - 3x_3 - 4x_4$$
 (23)
subject to

$$(x_1, x_2, x_3, x_4) = (L + 5, 0, L, 6L + 20)$$

is a feasible solution with objective value

$$36(L+5) - 3L - 4(6L+2) = 9L - 172.$$

So, the problem is unbounded.