Solution to BreadCo

Variables
x_{1} - loaves of French Bread baked
x_{2} - loaves of Sourdough Bread baked
x_{3} - packets of yeast bought
$x_{4}-\mathrm{oz}$. of flour bought
Objective:

$$
\max 36 x_{1}+30 x_{2}-3 x_{3}-4 x_{4}
$$

Constraints:
yeast used \leq yeast on hand

$$
x_{1}+x_{2} \leq x_{3}+5
$$

flower used \leq flower on hand

$$
6 x_{1}+5 x_{2} \leq x_{4}+10
$$

Nonnegativity: all variables

LP

maximize $36 x_{1}+30 x_{2}-3 x_{3}-4 x_{4}$
subject to

$$
\begin{array}{rlrlllll}
x_{1} & + & x_{2} & - & x_{3} & & & \leq 5 \\
6 x_{1} & +5 x_{2} & & & - & x_{4} & \leq 10 \\
x_{1} & , & x_{2} & , & x_{3} & , & x_{4} & \geq 0 \tag{4}
\end{array}
$$

Put into standard form:

$$
\begin{array}{rlrlll}
z & = & 36 x_{1}+30 x_{2}-3 x_{3} & -4 x_{4} \\
s_{1} & =5-x_{1} & -x_{2}+x_{3} & \\
s_{2} & =10-6 x_{1}-5 x_{2} & & +x_{4} \tag{7}
\end{array}
$$

Choose x_{1} to enter
Choose s_{2} to exit

Iteration 1

$$
\begin{array}{rlrlll}
z & = & 36 x_{1} & +30 x_{2} & -3 x_{3} & -4 x_{4} \\
s_{1} & =5 & -x_{1} & -x_{2} & +x_{3} & \\
s_{2} & =10-6 x_{1}-5 x_{2} & & +x_{4} \tag{10}
\end{array}
$$

Choose x_{1} to enter Choose s_{2} to exit

$$
\begin{array}{rlrl}
z & =60-6 s_{2} & -3 x_{3} & +2 x_{4} \\
x_{1} & =\frac{5}{3}-\frac{s_{2}}{6}-\frac{5}{6} x_{2} & +\frac{x_{4}}{6} \\
s_{2} & =\frac{10}{3}+\frac{s_{2}}{6}-\frac{x_{2}}{6}+x_{3}-\frac{x_{4}}{6} \tag{13}
\end{array}
$$

Choose x_{4} to enter
Choose s_{1} to exit

Iteration 2

$$
\begin{array}{rlrl}
z & =60-6 s_{2} & -3 x_{3} & +2 x_{4} \\
x_{1} & =\frac{5}{3}-\frac{s_{2}}{6}-\frac{5}{6} x_{2} & +\frac{x_{4}}{6} \\
s_{2} & =\frac{10}{3}+\frac{s_{2}}{6}-\frac{x_{2}}{6}+x_{3} & -\frac{x_{4}}{6} \tag{16}
\end{array}
$$

Choose x_{4} to enter
Choose s_{1} to exit

$$
\begin{align*}
z & =100-4 s_{2}-2 x_{2}+9 x_{3}-12 s_{1} \tag{17}\\
x_{1} & =5 \tag{18}\\
x_{4} & =20+x_{2}-x_{3}-s_{1} \tag{19}\\
& -6 x_{3}-6 s_{1}
\end{align*}
$$

Iteration 3

$$
\begin{align*}
z & =100-4 s_{2}-2 x_{2}+9 x_{3}-12 s_{1} \tag{20}\\
x_{1} & =5 \tag{21}\\
x_{4} & =20+x_{2}-x_{3}-s_{1} \tag{22}\\
& -6 x_{3}-6 s_{1}
\end{align*}
$$

Choose x_{3} to enter.
Nothing limits its increase!!
Therefore, this LP is unbounded.
Note that it even gives us a particular unbounded solution. If we set $x_{3}=L$, where L is a large number, $x_{2}, s_{1}, s_{2}=0$, and then use the equations to set $x_{1}=L+5$ and $x_{4}=6 L+20$,

Solution

we can go back to the original LP :
maximize $36 x_{1}+30 x_{2}-3 x_{3}-4 x_{4}$
subject to

$$
\begin{array}{rlrlllll}
x_{1} & + & x_{2} & - & x_{3} & & & \leq 5 \tag{24}\\
6 x_{1} & + & 5 x_{2} & & & - & x_{4} & \leq 10 \\
x_{1} & , & x_{2} & , & x_{3} & , & x_{4} & \geq 0
\end{array}
$$

and

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(L+5,0, L, 6 L+20)
$$

is a feasible solution with objective value

$$
36(L+5)-3 L-4(6 L+2)=9 L-172
$$

So, the problem is unbounded.

