A Degenerate LP

Definition: An LP is degenerate if in a basic feasible solution, one of the basic variables takes on a zero value. Degeneracy is a problem in practice, because it makes the simplex algorithm slower.

Original LP

maximize $\quad x_{1}+x_{2}+x_{3}$
subject to

$$
\begin{align*}
x_{1}+x_{2} & \leq 8 \tag{2}\\
-x_{2}+x_{3} & \leq 0 \tag{3}\\
x_{1}, x_{2}, & \geq 0 \tag{4}
\end{align*}
$$

Standard form.

$$
\begin{array}{rlrl}
z & = & x_{1}+x_{2}+x_{3} \\
s_{1} & =8-x_{1}-x_{2} \\
s_{2} & = & & \tag{7}\\
& & -x_{2}+x_{3}
\end{array}
$$

Iteration 1

$$
\begin{align*}
& z= \tag{8}\\
& s_{1}=8-x_{1}+x_{2}+x_{3} \tag{9}\\
& s_{2}= \tag{10}\\
&-x_{1} \\
& \\
& \\
& x_{2}+x_{3}
\end{align*}
$$

Note that one of the basic variables is 0 . We choose x_{1} as the entering variable and s_{1} as the leaving variable.

$$
\begin{array}{rrrr}
z & =8 & & +x_{3} \\
x_{1} & =8 & -s_{1} \\
s_{2} & = & & \tag{13}\\
& x_{2} & & s_{1} \\
x_{2} & -x_{3} & &
\end{array}
$$

Note again that one of the basic variables is 0 . The previous pivot did increase the objective function value from 0 to 8 though.

Iteration 2

$$
\begin{array}{rlrl}
z & =8 & & +x_{3} \\
x_{1} & =8 & -s_{1} \\
s_{2} & = & & x_{2} \tag{16}\\
& & & -s_{1} \\
x_{2} & -x_{3} &
\end{array}
$$

We now choose x_{3} as the entering variable, and s_{2} as the leaving variable. These were our only choices.

$$
\begin{array}{rlrl}
z & =8 & +x_{2}-s_{1} & -s_{2} \\
x_{1} & =8 & -x_{2} & -s_{1} \\
x_{3} & = & x_{2} & \tag{19}\\
& & -s_{2}
\end{array}
$$

Note that the objective function did not increase. This occurs because of degeneracy.

Iteration 3

$$
\begin{align*}
& z=8+x_{2}-s_{1}-s_{2} \tag{20}\\
& x_{1}=8-x_{2}-s_{1} \tag{21}\\
& x_{3}=x_{2} \quad-s_{2} \tag{22}
\end{align*}
$$

We now choose x_{2} as the entering variable and x_{1} as the leaving variable.

$$
\begin{align*}
z & =16-x_{1}-2 s_{1}-s_{2} \tag{23}\\
x_{2} & =8-x_{1}-s_{1} \tag{24}\\
x_{3} & =8-x_{1}-s_{1}-s_{2} \tag{25}
\end{align*}
$$

Since all coefficients of variables in the objective function are negative, we now have the optimal solution, $\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}\right)=(0,8,8,0,0)$ with objective value 16. Notice that in the final solution, the basic variables are all nonzero. In a degenerate LP, it is also possible that even in the final solution, some of the basic variables will be zero.

One other thing to note is that x_{1} was an entering variable in one iteration, and a leaving variable in another. In general, a variable can be an entering and leave the basic many times in the course of the simplex algorithm.

