A Degenerate LP

Definition: An LP is degenerate if in a basic feasible solution, one of the basic variables takes on a zero value. Degeneracy is a problem in practice, because it makes the simplex algorithm slower.

Original LP

maximize	$x_1 + x_2$	$+ x_3$	(1)
subject to			
	$x_1 + x_2$	≤ 8	(2)
	$-x_2 + x_3$	≤ 0	(3)
	$x_1, x_2,$	≥ 0 .	(4)

Standard form.

z =	x_1	$+ x_2 + x_3$	(5)
$s_1 = 8 -$	x_1	$-x_{2}$	(6)
$s_2 =$		$-x_2 + x_3$	(7)

Iteration 1

$$z = x_1 + x_2 + x_3 \tag{8}$$

$$s_1 = 8 - x_1 - x_2 \tag{9}$$

$$s_2 = -x_2 + x_3$$
 (10)

Note that one of the basic variables is 0. We choose x_1 as the entering variable and s_1 as the leaving variable.

$$z = 8 + x_3 - s_1$$
 (11)

$$x_1 = 8 - x_2 - s_1 \tag{12}$$

$$s_2 = x_2 - x_3$$
 (13)

Note again that one of the basic variables is 0. The previous pivot did increase the objective function value from 0 to 8 though.

Iteration 2

$$z = 8 + x_3 - s_1$$
 (14)

$$x_1 = 8 - x_2 - s_1 \tag{15}$$

$$s_2 = x_2 - x_3$$
 (16)

We now choose x_3 as the entering variable, and s_2 as the leaving variable. These were our only choices.

$$z = 8 + x_2 - s_1 - s_2 \tag{17}$$

$$x_1 = 8 - x_2 - s_1 \tag{18}$$

$$x_3 = x_2 - s_2 \tag{19}$$

Note that the objective function did not increase. This occurs because of degeneracy.

Iteration 3

$$z = 8 + x_2 - s_1 - s_2 \tag{20}$$

$$x_1 = 8 - x_2 - s_1 \tag{21}$$

 $x_3 = x_2 - s_2 \tag{22}$

We now choose x_2 as the entering variable and x_1 as the leaving variable.

$$z = 16 - x_1 - 2s_1 - s_2 \tag{23}$$

$$x_2 = 8 - x_1 - s_1 \tag{24}$$

$$x_3 = 8 - x_1 - s_1 - s_2 \tag{25}$$

Since all coefficients of variables in the objective function are negative, we now have the optimal solution, $(x_1, x_2, x_3, s_1, s_2) = (0, 8, 8, 0, 0)$ with objective value 16. Notice that in the final solution, the basic variables are all nonzero. In a degenerate LP, it is also possible that even in the final solution, some of the basic variables will be zero.

One other thing to note is that x_1 was an entering variable in one iteration, and a leaving variable in another. In general, a variable can be an entering and leave the basic many times in the course of the simplex algorithm.