Finding the optimal basis

Consider the LP:

$$\begin{array}{lll}
\mathbf{maximize} & 60x_1 + 30x_2 + 20x_3 \\
\mathbf{subject to}
\end{array} \tag{1}$$

$$8x_1 + 6x_2 + x_3 + s_1 = 48 (2)$$

$$4x_1 + 2x_2 + 1.5x_3 + s_2 = 20 (3)$$

$$2x_1 + 1.5x_2 + .5x_3 + s_3 = 8 (4)$$

The optimal solution (in the book form is)

$$z +5x_2 +20s_2 +10s_3 = 280 (5)$$

$$-2x_2 + s_1 + 2s_2 - 8s_3 = 24 (6)$$

$$-2x_2 + x_3 + 2s_2 - 4s_3 = 8 (7)$$

$$x_1 + 1.25x_2 - .5s_2 + 1.5s_3 = 2 (8)$$

Question: Suppose I tell you which variables are basic in the optimal solution. From that information, can you easily derive the optimal solution? Answer:

From the optimal basis I can determine which variables are basic.

Basic and nonbasic variables

The optimal solution (in the book form is)

$$z +5x_2 +20s_2 +10s_3 = 280$$

$$-2x_2 +s_1 +2s_2 -8s_3 = 24$$

$$-2x_2 +x_3 +2s_2 -4s_3 = 8$$

$$x_1 +1.25x_2 -5s_2 +1.5s_3 = 2$$

$$(9)$$

$$(10)$$

$$(11)$$

$$BV = \{s_1, x_3, x_1\}$$

and nonbasic

$$NBV = \{x_2, s_2, s_3\}.$$

For convenience, lets convert these into vectors:

$$x_{BV} = \left(egin{array}{c} s_1 \ x_3 \ x_1 \end{array}
ight) \ {f and} \ x_{NBV} = \left(egin{array}{c} x_2 \ s_2 \ s_3 \end{array}
ight).$$

We can now partition the original LP based on the non-basic and basic variables.

Partitioning the original LP

$$\begin{array}{lll}
\mathbf{maximize} & 60x_1 + 30x_2 + 20x_3 \\
\mathbf{subject to}
\end{array} \tag{13}$$

$$8x_1 + 6x_2 + x_3 + s_1 = 48$$
 (14)

$$8x_1 + 6x_2 + x_3 + s_1 = 48$$
 (14)
 $4x_1 + 2x_2 + 1.5x_3 + s_2 = 20$ (15)
 $2x_1 + 1.5x_2 + .5x_3 + s_3 = 8$ (16)

$$2x_1 + 1.5x_2 + .5x_3 + s_3 = 8 (16)$$

$$x_{BV} = \left(egin{array}{c} s_1 \ x_3 \ x_1 \end{array}
ight) \ \ {f and} \ \ x_{NBV} = \left(egin{array}{c} x_2 \ s_2 \ s_3 \end{array}
ight).$$

We can now partition the original LP based on the non-basic and basic variables.

$$x_{BV} = \left(egin{array}{c} s_1 \ x_3 \ x_1 \end{array}
ight) ext{ and } x_{NBV} = \left(egin{array}{c} x_2 \ s_2 \ s_3 \end{array}
ight).$$

First c_{BV} , the coefficients of the basic vars in the original obj. function.

$$c_{BV} = (0\ 20\ 60)$$

and c_{NBV} , the coefficients of the basic vars in the original obj. function.

$$c_{NBV} = (30\ 0\ 0)$$
.

We can also partition the columns of the A matrix into those corresponding to the basic variables (B) and nonbasic variables (N). Note that it is very important to keep the order of the columns consistent.

$$B = \begin{pmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & .5 & 2 \end{pmatrix} \text{ and } N = \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix}.$$

Finally, we just copy the b vector

$$b = \begin{pmatrix} 48\\20\\8 \end{pmatrix}$$

•

Finding the optimal basis

$$x_{BV} = \begin{pmatrix} s_1 \\ x_3 \\ x_1 \end{pmatrix} x_{NBV} = \begin{pmatrix} x_2 \\ s_2 \\ s_3 \end{pmatrix} c_{BV} = (0\ 20\ 60) \ c_{NBV} = (30\ 0\ 0) \ b = \begin{pmatrix} 48 \\ 20 \\ 8 \end{pmatrix}.$$

$$B = \begin{pmatrix} 1\ 1\ 8 \\ 0\ 1.5\ 4 \\ 0\ .5\ 2 \end{pmatrix} \text{ and } N = \begin{pmatrix} 6\ 0\ 0 \\ 2\ 1\ 0 \\ 1.5\ 0\ 1 \end{pmatrix}.$$

We can use this to "factor" the original LP. objective function:

$$c^T x = c_{BV} x_{BV} + c_{NBV} x_{BNV}$$

constraints:

$$Ax = Bx_{BV} + Nx_{NBV} \le b.$$

Let's check this out numerically

$$c_{BV}x_{BV} + c_{NBV}x_{BNV} = (0\ 20\ 60) \begin{pmatrix} s_1 \\ x_3 \\ x_1 \end{pmatrix} + (30\ 0\ 0) \begin{pmatrix} x_2 \\ s_2 \\ s_3 \end{pmatrix}$$
$$= 0s_1 + 20x_3 + 60x_1 + 30x_2 + 0s_2 + 0s_3$$
$$= 60x_1 + 30x_2 + 20x_3$$

Similarly

$$Ax = Bx_{BV} + Nx_{NBV} = \begin{pmatrix} 1 & 1 & 8 \\ 0 & 1.5 & 4 \\ 0 & .5 & 2 \end{pmatrix} \begin{pmatrix} s_1 \\ x_3 \\ x_1 \end{pmatrix} + \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ s_2 \\ s_3 \end{pmatrix} =$$
verify on blackboard.

Finding the optimal basis

So we can write any LP as

$$z = c_{BV}x_{BV} + c_{NBV}x_{NBV}$$

$$Bx_{BV} + Nx_{NBV} = b$$

$$x_{BV}, x_{NBV} \ge 0$$

Let's take the constraints and multiply by B^{-1} .

$$Bx_{BV} + Nx_{NBV} = b (17)$$

$$\Rightarrow B^{-1}(Bx_{BV} + Nx_{NBV}) = B^{-1}b \tag{18}$$

$$\Rightarrow x_{BV} + B^{-1}Nx_{NBV} = B^{-1}b \tag{19}$$

$$\Rightarrow \qquad x_{BV} \qquad = B^{-1}b - B^{-1}Nx_{NBV} \tag{20}$$

So we can solve for x_{BV} in terms of B, N, b and x_{NBV} .

Now let's look at the objective function, and substitute for x_{BV} from equation 20:

$$z = c_{BV}x_{BV} + c_{NBV}x_{NBV}$$

= $c_{BV}(B^{-1}b - B^{-1}Nx_{NBV}) + c_{NBV}x_{NBV}$
= $c_{BV}B^{-1}b - (c_{BV}B^{-1}N - c_{NBV})x_{NBV}$

So we can solve for z in terms of B, N, b and x_{NBV} .

Checking with our example

$$x_{BV} = B^{-1}b - B^{-1}Nx_{NBV}$$

$$B^{-1} = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -.5 & 15 \end{pmatrix}$$

$$B^{-1}b = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -.5 & 15 \end{pmatrix} \begin{pmatrix} 48 \\ 20 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 2 \end{pmatrix}.$$

$$B^{-1}N = \begin{pmatrix} 1 & 2 & -8 \\ 0 & 2 & -4 \\ 0 & -.5 & 15 \end{pmatrix} \begin{pmatrix} 6 & 0 & 0 \\ 2 & 1 & 0 \\ 1.5 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 2 & -8 \\ -2 & 2 & -4 \\ 1.25 & -.5 & 1.5 \end{pmatrix}$$

Putting it together:

$$\begin{pmatrix} s_1 \\ x_3 \\ x_1 \end{pmatrix} = \begin{pmatrix} 24 \\ 8 \\ 2 \end{pmatrix} - \begin{pmatrix} -2 & 2 & -8 \\ -2 & 2 & -4 \\ 1.25 & -.5 & 1.5 \end{pmatrix} \begin{pmatrix} x_2 \\ s_2 \\ s_3 \end{pmatrix}$$

Compare with

$$z +5x_{2} +20s_{2} +10s_{3} = 280$$

$$-2x_{2} +s_{1} +2s_{2} -8s_{3} = 24$$

$$-2x_{2} +x_{3} +2s_{2} -4s_{3} = 8$$

$$x_{1} +1.25x_{2} -.5s_{2} +1.5s_{3} = 2$$

$$(21)$$

$$(22)$$

$$(23)$$

And the objective function is

$$z = c_{BV}B^{-1}b - (c_{BV}B^{-1}N - c_{NBV})x_{NBV}$$

$$= (0\ 20\ 60) \begin{pmatrix} 24\\8\\2 \end{pmatrix} - \begin{pmatrix} (0\ 20\ 60) \begin{pmatrix} -2\ 2 & -8\\-2\ 2 & -4\\1.25\ -.5\ 1.5 \end{pmatrix} - (30\ 0\ 0) \begin{pmatrix} x_2\\s_2\\s_3 \end{pmatrix}$$

$$= 180 - 5x_2 - 10s_2 - 10s_3$$

Summary of some formulas

- Let a_j be the column corresponding to x_j in A.
- Let \bar{c}_j be the coefficient of x_j in the optimal tableaux.
- $\bullet \ \bar{c}_j = c_{BV}B^{-1}a_j c_j$

We can simplify last formula if x_i is slack or excess or artificial:

- If x_j is slack, $c_j = 0$ and a_j is a vector with one 1 and the rest 0's, so $\bar{c}_j = c_{BV}B^{-1}a_j = j$ th element of $c_{BV}B^{-1}$
- If x_j is excess, $c_j = 0$ and a_j is a vector with one -1 and the rest 0's, so $\bar{c}_j = c_{BV}B^{-1}a_j = -i$ th element of $c_{BV}B^{-1}$
- If x_j is artificial, $c_j = -M$ and a_j is a vector with one 1 and the rest 0's, so $\bar{c}_j = c_{BV}B^{-1}a_j = i$ th element of $c_{BV}B^{-1} + M$

Another example

$$z = x_1 + 4x_2$$

$$x_1 + 2x_2 + s_1 = 6$$

$$2x_1 + x_2 + s_2 = 8$$

$$x_1, x_2, s_1, s_2 \ge 0$$

Suppose that in the optimal basis, the basic variable are x_2 and s_2 . Then,

$$x_{BV} = \begin{pmatrix} x_2 \\ s_2 \end{pmatrix}$$
 $x_{NBV} = \begin{pmatrix} x_1 \\ s_1 \end{pmatrix}$ $c_{BV} = (4\ 0)$ $x_{NBV} = (1\ 0)$

$$B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \quad N = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 6 \\ 8 \end{pmatrix}.$$

We compute

$$B^{-1} = \left(\begin{array}{cc} 1/2 & 0\\ -1/2 & 1 \end{array}\right).$$

The optimal final tableaux can be computed from the formulas:

$$z + (c_{BV}B^{-1}N - c_{NBV})x_{NBV} = c_{BV}B^{-1}b$$
$$x_{BV} + B^{-1}Nx_{NBV} = B^{-1}b$$

Computing the optimal basis

$$z + (c_{BV}B^{-1}N - c_{NBV})x_{NBV} = c_{BV}B^{-1}b$$
$$x_{BV} + B^{-1}Nx_{NBV} = B^{-1}b$$

We compute

$$B^{-1}N = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 3/2 & -1/2 \end{pmatrix}.$$

$$B^{-1}b = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 8 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

$$c_{BV}(B^{-1}N) = (4\ 0) \begin{pmatrix} 1/2 & 1/2 \\ 3/2 & -1/2 \end{pmatrix} = (2\ 2)$$

$$c_{BV}(B^{-1}b) = (4\ 0) \begin{pmatrix} 3 \\ 5 \end{pmatrix} = 12$$

We now have the objective function

$$z + ((2\ 2) - (1\ 0)) \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = 12$$

and the constraints

$$\begin{pmatrix} x_2 \\ s_2 \end{pmatrix} + \begin{pmatrix} 1/2 & 1/2 \\ 3/2 & -1/2 \end{pmatrix} \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

Final tableaux

We now have the objective function

$$z + ((2\ 2) - (1\ 0)) \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = 12$$

and the constraints

$$\begin{pmatrix} x_2 \\ s_2 \end{pmatrix} + \begin{pmatrix} 1/2 & 1/2 \\ 3/2 & -1/2 \end{pmatrix} \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

which yields

$$z + x_1 + 2s_1 = 12$$

$$(1/2)x_1 + x_2 + (1/2)s_1 = 3$$

$$(3/2)x_1 - (1/2)s_1 + s_2 = 5$$

Changes in parameters

- Let's explore changes in right hand side and objective function coefficient.
- We will again ask when current basis remains optimal.
 - non-negative r.h.s.,
 - non-negative coefficient in row 0
- We proceed by example

Change in objective function coefficient of a nbv

Let's change the objective function coefficient of x_1 . x_1 is non-basic, so we are changing only c_{NBV} .

It become $(1 + \Delta 0)$. Looking at equations:

$$z + (c_{BV}B^{-1}N - c_{NBV})x_{NBV} = c_{BV}B^{-1}b$$
$$x_{BV} + B^{-1}Nx_{NBV} = B^{-1}b$$

we see that c_{NBV} only changes objective function.

We recompute objective function. Instead of

$$z + ((2\ 2) - (1\ 0)) \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = 12$$

we have

$$z + ((2\ 2) - (1 + \Delta\ 0)) \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = 12$$

or

$$z + (1 - \Delta)x_1 + 2s_1 = 12$$

So, to maintain current basis, we have $\Delta \leq 1$. Note that since x_1 is nonbasic, this is reduced cost, the amount we have to change the objective function in order to make the variable basic.

Changing the coefficient of a basic variable

Let's change the coefficient of x_2

$$z + (c_{BV}B^{-1}N - c_{NBV})x_{NBV} = c_{BV}B^{-1}b$$
$$x_{BV} + B^{-1}Nx_{NBV} = B^{-1}b$$

Again, we only have a change in objective function. A change to c_{BV} affects the objective function in two places, so we substitute $4 + \Delta$ for 4 as the first entry in c_{BV} and obtain:

$$z + ((4 + \Delta \ 0) \begin{pmatrix} 1/2 & 1/2 \\ 3/2 & -1/2 \end{pmatrix} - (1 \ 0)) \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = (4 + \Delta \ 0) \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

or

$$z + (1 + \Delta/2)x_1 + (2 + \Delta/2)s_1 = 12 + 3\Delta$$

So, to keep the objective function coefficients non-negative, we must have $\Delta \geq -2$ and that each increase of the coefficient by 1 increases the objective function by 3.

Right hand side change

A change to the right hand side changes b. Let's try to change 6 to $6 + \Delta$.

$$z + (c_{BV}B^{-1}N - c_{NBV})x_{NBV} = c_{BV}B^{-1}b$$
$$x_{BV} + B^{-1}Nx_{NBV} = B^{-1}b$$

Note that b only appears on the right hand side.

Changing b to $\begin{pmatrix} 6+\Delta \\ 8 \end{pmatrix}$ changes $B^{-1}b$ to $\begin{pmatrix} 3+\Delta/2 \\ 5-\Delta/2 \end{pmatrix}$. Thus the system of equations becomes

$$(1/2)x_1 + x_2 + (1/2)s_1 = 3 + \Delta/2$$

$$(3/2)x_1 - (1/2)s_1 + s_2 = 5 - \Delta/2$$

and the objective function value is now

$$c_{BV}B^{-1}b = (4\ 0)\begin{pmatrix} 3 + \Delta/2 \\ 5 - \Delta/2 \end{pmatrix} = 12 + 2\Delta$$

So we can change Δ in the range $-6 \le \Delta \le 10$ and the shadow price is 2.

Right hand side change

What about changing the 8 to $8 + \Delta$. Now

$$B^{-1}b = \begin{pmatrix} 3\\ 5+\Delta \end{pmatrix}.$$

Our allowed range of change is $-5 \le \Delta \le \infty$. What about the effect on the objective function? We compute

$$c_{BV}B^{-1}b = (4\ 0)\begin{pmatrix} 3\\ 5+\Delta \end{pmatrix} = 12$$

So changing the right hand side of the second equation has no effect. This is not surprising, since s_2 is basic, meaning that there is slack in the second equation.