Branch and Bound for $1|r_j|L_{\text{max}}$

Branch and Bound (for minimization)

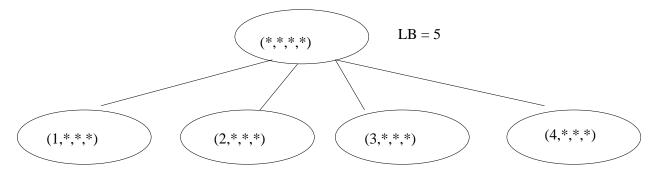
- Set a variable and branch
- Compute lower bounds at nodes by solving a relaxed problem.
- Use lower bounds to prune tree. A lower bound at a node is a lower bound on all children.
- Three ways to prune:
 - 1. If a node is infeasible
 - 2. If a node has a lower bound that is larger than a candidate solution
 - 3. If a node has a value that is larger than a candidate solution.

Example

j	$\mid r_j \mid$	p_j	d_j
1	0	4	8
2	1	2	12
3	3	6	11
4	5	5	10

To compute a lower bound we use a polynomially solvable relaxation, $1|r_j, \text{pmtn}|L_{\text{max}}$. This is solved by preemptive EDD.

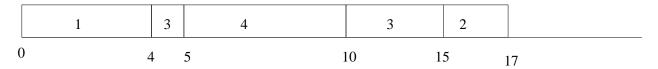
	1	3	4	3	3	2	
C)	4	5	10	1:	5	17


$$L_1 = -4, L_4 = 0, L_3 = 4, L_2 = 5.$$

$$L_{\text{max}} = 5.$$

This means that for the real problem $L_{\rm max} \geq 5$.

Begin branching


Branch on the choice of first job

Now for each branch we compute a new lower bound.

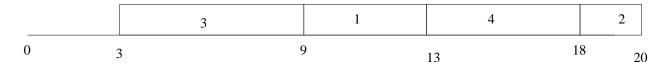
Computing lower bounds


1 first. Same as original lowerbound

$$L_1 = -4, L_4 = 0, L_3 = 4, L_2 = 5.$$

$$L_{\text{max}} = 5.$$

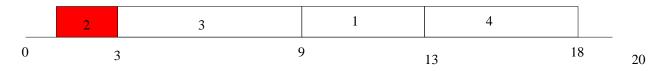
2 first.



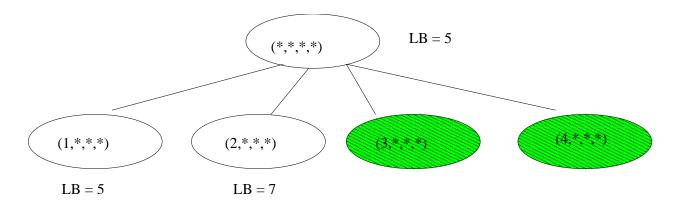
$$L_2 = -9, L_1 = -1, L_4 = 2, L_3 = 7.$$

$$L_{\text{max}} = 7.$$

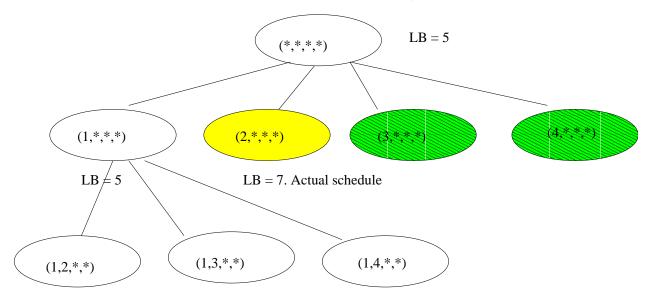
Note that this is an actual solution.


3 first.

$$L_3 = -2, L_1 = 5, L_4 = 8, L_2 = 8.$$

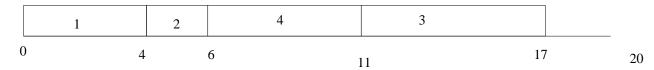

$$L_{\text{max}} = 8.$$

But, this node can actually be pruned. It is clearly dominated by the following schedule



In other words, we know that starting with node three is a bad idea. For the same reason, we can prune starting at node 4.

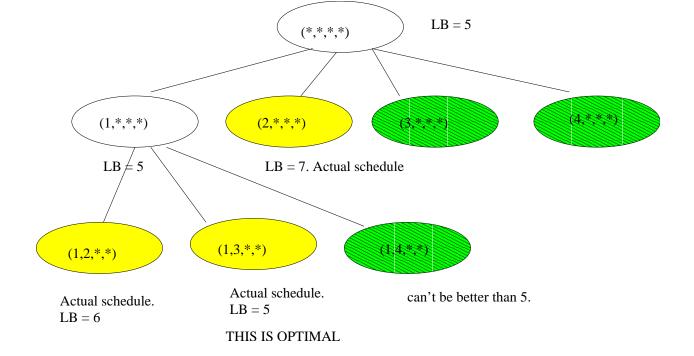
Current tree



Choose a node to expand further. Can only choose 1.

Now, we check the lower bounds at the nodes by solving the preemptive EDD schedule.

1,2 first.



This is a real schedule with $L_{\text{max}} = 6$. . 1,3 first.

This is a real schedule with $L_{\text{max}} = 5$..

We can actually stop now, because we have a schedule that matches our lower bound.

