## An algorithm for $1 \| \Sigma T_{j}$.

Use dynamic programming, from the following formulas:

- Let $V(J, t)$ be the optimal schedule for job set $J$ starting at time $t$.
- Let $J(j, l ; k)$ be the set of job with indices between $j$ and $l$ and which have processing time less than $p_{k}$. Note that $k$ is excluded from this set.

Recursion:

$$
\begin{gathered}
V(\emptyset, t)=0 \\
V(\{j\}, t)=\max \left(0, t+p_{j}-d_{j}\right) \\
V(J(j, l ; k), t)=\min _{\delta}\left(V\left(J\left(j, k^{\prime}+\delta ; k^{\prime}\right), t\right)\right. \\
+\max ^{\prime}\left(0, C_{k^{\prime}}(\delta)-d_{k^{\prime}}\right) \\
+ \\
\left.V\left(J\left(k^{\prime}+\delta+1, l, k^{\prime}\right), C_{k^{\prime}}(\delta)\right)\right)
\end{gathered}
$$

where $k^{\prime}$ is the job with minimum processing time in $J(j, l ; k)$.

| $j$ | $p_{j}$ | $d_{j}$ |
| :--- | :--- | :--- |
| 1 | 121 | 260 |
| 2 | 79 | 266 |
| 3 | 147 | 266 |
| 4 | 83 | 336 |
| 5 | 130 | 337 |

$$
\min \left\{\begin{array}{l}
V(J(1,3,3), 0)+81+V(J(4,5,3), 347), \\
V(J(1,4,3), 0)+164+V(J(5,5,3), 430), \\
V(J(1,5,3), 0)+294+V(\emptyset, 560)
\end{array}\right\}
$$

- $J(1,3,3)=\{1,2\}$. These can be scheduled in order 1,2 , with objective value 0 .
- $J(1,4,3)=\{1,2,4\}$. We compute this recursively and get that we can schedule $(1,2,4)$ with objective value 0 .
- $J(1,5,3)=\{1,2,4,5\}$. We compute this recursively and get the schedule $(1,2,4,5)$ with value 347 .
- $J(4,5,3)=\{4,5\} . V(J(4,5,3), 347)$ is the optimal schedule for 4 and 5 starting at time 347 . This order is $(4,5)$ with value $94+223=317$.
- $J(5,5,3)=\{5\} . \quad V(J(5,5,3), 430)$ is the optimal way to schedule job 5 starting at time 430.
so we get

$$
\min \left\{\begin{array}{l}
0+81+317 \\
0+164+223, \\
76+294+0
\end{array}\right\}=370
$$

So optimal schedule is $1,2,4,5,3$

$$
\begin{aligned}
& k^{\prime}=4, \\
& J(1,4,3)=\min \{V(J(1,4,4), 0)+0+V(\emptyset, 283)\} \\
& \text { Recursion for } J(1,5,3) \\
& k^{\prime}=5 \\
& J(1,5,3)=\min \{V(J(1,5,5), 0)+76+V(\emptyset, 413\}
\end{aligned}
$$

