
Basics of Algorithm Analysis

Problem vs. Instance vs. Algorithm vs. Solution

• Problem : minimize makespan on 2 machines P ||Cmax

• Instance: 5 jobs with processing times (4, 1, 8, 5, 6)

• Algorithm: Alternate putting the jobs on machine 1 and machines 2.

• Solution: Machine 1 has jobs J1, J3, J5 with total processing time 18,

machine 2 has jobs J2, J4 with total processing time 6. Makespan is 18.

Goals:

• We want to develop algorithms that, on “any” instance, will produce

good solutions.

• We want to understand how our algorithms perform, so that, given a

new instance, we can predict how long they will take and what kind of

solution they return.

Basics of Algorithm Analysis

Running Time: Given an algorithm, and an input of size n, we wish to

know the running time as a function of n.

• We measure running time as a function of n, the size of the input (in

bytes assuming a reasonable encoding).

• We work in the RAM model of computation. All “reasonable” oper-

ations take “1” unit of time. (e.g. +, *, -, /, array access, pointer

following, writing a value, one byte of I/O...)

What is the running time of an algorithm

• Best case (seldom used)

• Average case (used if we understand the average)

• Worst case (used most often)

We measure as a function of n, and ignore low order terms.

• 5n3 + n− 6 becomes n3

• 8n log n− 60n becomes n log n

• 2n + 3n4 becomes 2n

Asymptotic notation

big-O

O(g(n)) = {f (n) : there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0} .

Alternatively, we say

f (n) = O(g(n)) if there exist positive constants c and n0 such that

0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Informally, f (n) = O(g(n)) means that f (n) is asymptotically less than or

equal to g(n).

Classification We use these to classify algorithms into classes, e.g. n, n2,

n log n, 2n.

Simple Rules

• Nested loops multiply (even when the inner loop is from 1 to the outer

loop value).

• Sequential loops add

• Repeated halving is linear.

