Precedence Constraints: $1 | \text{prec} | L_{\text{max}}$

Example			
j	p_j	d_{j}	
Α	2	10	
В	3	24	
\mathbf{C}	1	21	
D	6	5	
\mathbf{E}	5	15	
\mathbf{F}	4	19	

Precedence: $A \to B, B \to C, B \to F, D \to E, E \to F$

Algorithmic Ideas?: Can we choose which job will run first?

Precedence Constraints: $1 | \text{prec} | L_{\text{max}}$

Example			
j	p_{j}	d_{j}	
A	2	10	
В	3	24	
\mathbf{C}	1	21	
D	6	5	
\mathbf{E}	5	15	
\mathbf{F}	4	19	

Precedence: $A \to B, B \to C, B \to F, D \to E, E \to F$

Algorithmic Ideas?: Can we choose which job will run first? NO, but we can choose which job will run last. Least Cost Last

More General Cost Functions

- Let each job j have its own cost function $f_j(C_j)$.
- Objective $h_{\max} = \max\{h_1(C_1), \dots, h_n(C_n)\}$.
- For L_{\max} , we just have that $h_j(C_j) = C_j d_j$.

Example

- LCL runs in $O(n^2)$ time.
- LCL is optimal for $1|prec|h_{max}$. Proof by exchange argument.