Complexity of a problem

- We measure the time to solve a problem of input size n by a function $T(n)$ which measures the running time.
- $T(n)$ is an upper bound on the time for all inputs of size n.
- We only focus on the most significant term in $T(n)$. (Big-O notation).

Examples

$$
\begin{gathered}
T(n)=3 n^{2}-n+6 . \\
T(n)=3 n \log n+50 n-1 \\
\left.T(n)=2^{n}+n^{3}\right) \\
O(n \log n) \\
O\left(2^{n}\right)
\end{gathered}
$$

Some problems

- Adding n numbers. $O(n)$
- Sorting n items. $O(n \log n)$
- Multiplying $2 n$ by n matrices $O\left(n^{2.37}\right)$
- Finding the shortest route between 2 points in a network with n roads $O(n \log n)$
- Solving a system of n linear equations $O\left(n^{3}\right)$

These are all polynomial functions.
$2^{n}, n!$, and n^{n}, are non-polynomial functions.

P

- $P=\{$ Problems that can be solved in polynomial time $\}$
- P is roughly the class of problems that can be solved efficiently.
- P is independent of
- computer hardware (non-quantum)
- operating system
- programming language

What about problems which we have not put into P?

Problems not known to be in P

- Traveling Salesman Problem
- Formula satisfiability
- Many more

Satisfiability:

Input: A boolean formula, e.g.

$$
\left(x_{1} \cup x_{2}\right) \cap\left(\overline{x_{1}} \cup x_{4} \cup x_{6}\right)
$$

Is there a setting that makes this true?
Yes: e.g. $\quad x_{1}=T ; x_{6}=T$
Not always possible

$$
\left(x_{1} \cup x_{2}\right) \cap\left(\overline{x_{1}} \cup x_{2}\right) \cap\left(x_{1} \cup \overline{x_{2}}\right) \cap\left(\overline{x_{1}} \cup \overline{x_{2}}\right)
$$

Hard problems

- We'd like to be able to say - There is no polynomial time algorithm for TSP.
- Unfortunately, we are really bad at making statements about problems being hard.

Hardness - The state of the art

- Some problems are not solvable by any computer (Does a program have an infinite loop).
- You have to read the input.
- You have to print the output.
- Sorting takes at least $n \log n$ time (assuming a reasonable model of a computer).
- There are n ! possible orderings for n numbers.
- Each step of the algorithm can "eliminate" half the orderings.
- You can halve $n!\quad \log _{2}(n!) \approx n \log n$ times.

Not much else is known

Hard problems

You are asked to solve new problem X. You can't.

- We'd like to be able to say - There is no polynomial time algorithm for X.
- We can say - I've worked on it for a while, and I'm not smart enough to solve X.
- Not good for job security, self-respect, impressing people at cocktail parties, etc.

Hard problems

You are asked to solve new problem X. You can't.

- We'd like to be able to say - There is no polynomial time algorithm for X.
- We can say - I've worked on it for a while, and I'm not smart enough to solve X.
- Not good for job security, self-respect, impressing people at cocktail parties, etc.

Face saving theory:

- We can say - I've worked on it for a while, and I'm not smart enough to solve X, but neither are thousands of other very smart people, who have been working for many years.
- Good for job security and self-respect. Not too successful at most cocktail parties.

NP-completeness

Brief introduction to NP-completeness

NP: The set of problems whose solution can be verified in polynomial time.

Verification of TSP: Given a permutation, is its length less than some value B ?
Verification of satisfiability: Given a setting of the booolean variables, is the formula true?

$$
\begin{gathered}
\left(x_{1} \cup x_{2}\right) \cap\left(\overline{x_{1}} \cup x_{4} \cup x_{6}\right) \\
x_{1}=T ; x_{2}=F ; x_{4}=F ; x_{6}=T
\end{gathered}
$$

Verification of sorting: Given a list of numbers, is it already in sorted order.

$$
3,6,9,2
$$

Verification

- Clearly, verification is no harder than solving a problem from scratch.
- Informally, problems for which you can enumerate all possible solutions and check them are in NP.
- Is verification significantly easier than solving a problem?

NP-completeness

NP

What does the question mark area look like? (Is it empty?)
NP-complete problems are the "hardest" problems in NP.

NP-completeness

NP

What does the question mark area look like? (Is it empty?)
NP-complete problems are the "hardest" problems in NP.

NP-completeness

If $P \neq N P$
NP

If $P=N P$
NP

The power of NP-completeness

The power comes from the diverse group of problems, e.g.

- traveling salesman problem
- formula satisfiability
- longest path between two points
- assigning frequencies in a cellphone network
- minimum phylogenetic tree
- minimum energy protein folding
- scheduling a factory
- 3-dimensional ising model
- the game geography
- nearest vector in a lattice
- ...

Either all of these are in P, or none are in P.

How do we show a new problem N is NP-complete?

- Choose a known NP-complete problem K .
- Show that K reduces to N.

K reduces to N means that we can use N as a "subroutine" for solving K.
N easy $\Rightarrow K$ easy

Contrapositive:
K hard $\Rightarrow N$ hard

