
Complexity of a problem

• We measure the time to solve a problem of input size n by a function T (n) which measures the
running time.

• T (n) is an upper bound on the time for all inputs of size n .

• We only focus on the most significant term in T (n) . (Big-O notation).

Examples

T (n) = 3n2 − n + 6. O(n2)

T (n) = 3n log n + 50n− 1 O(n log n)

T (n) = 2n + n3 O(2n)

Some problems

• Adding n numbers. O(n)

• Sorting n items. O(n log n)

• Multiplying 2 n by n matrices O(n2.37)

• Finding the shortest route between 2 points in a network with n roads O(n log n)

• Solving a system of n linear equations O(n3)

These are all polynomial functions.

2n , n! , and nn , are non-polynomial functions.

P

• P = {Problems that can be solved in polynomial time }

• P is roughly the class of problems that can be solved efficiently.

• P is independent of

– computer hardware (non-quantum)

– operating system

– programming language

What about problems which we have not put into P?

Problems not known to be in P

• Traveling Salesman Problem

• Formula satisfiability

• Many more

Satisfiability:

Input: A boolean formula, e.g.

(x1 ∪ x2) ∩ (x1 ∪ x4 ∪ x6)

Is there a setting that makes this true?
Yes: e.g. x1 = T ; x6 = T

Not always possible

(x1 ∪ x2) ∩ (x1 ∪ x2) ∩ (x1 ∪ x2) ∩ (x1 ∪ x2)

Hard problems

• We’d like to be able to say - There is no polynomial time algorithm for TSP.

• Unfortunately, we are really bad at making statements about problems being hard.

Hardness - The state of the art

• Some problems are not solvable by any computer (Does a program have an infinite loop).

• You have to read the input.

• You have to print the output.

• Sorting takes at least n log n time (assuming a reasonable model of a computer).

– There are n! possible orderings for n numbers.

– Each step of the algorithm can “eliminate” half the orderings.

– You can halve n! log2(n!) ≈ n log n times.

Not much else is known

Hard problems

You are asked to solve new problem X. You can’t.

• We’d like to be able to say - There is no polynomial time algorithm for X.

• We can say - I’ve worked on it for a while, and I’m not smart enough to solve X.

• Not good for job security, self-respect, impressing people at cocktail parties, etc.

Hard problems

You are asked to solve new problem X. You can’t.

• We’d like to be able to say - There is no polynomial time algorithm for X.

• We can say - I’ve worked on it for a while, and I’m not smart enough to solve X.

• Not good for job security, self-respect, impressing people at cocktail parties, etc.

Face saving theory:

• We can say - I’ve worked on it for a while, and I’m not smart enough to solve X, but neither are
thousands of other very smart people, who have been working for many years.

• Good for job security and self-respect. Not too successful at most cocktail parties.

NP-completeness

Brief introduction to NP-completeness

NP: The set of problems whose solution can be verified in polynomial time.

Verification of TSP: Given a permutation, is its length less than some value B ?

Verification of satisfiability: Given a setting of the booolean variables, is the formula true?

(x1 ∪ x2) ∩ (x1 ∪ x4 ∪ x6)

x1 = T ; x2 = F ; x4 = F ; x6 = T

Verification of sorting: Given a list of numbers, is it already in sorted order.

3, 6, 9, 2

Verification

• Clearly, verification is no harder than solving a problem from scratch.

• Informally, problems for which you can enumerate all possible solutions and check them are in NP.

• Is verification significantly easier than solving a problem?

NP-completeness

P

NP

?

What does the question mark area look like? (Is it empty?)

NP-complete problems are the “hardest” problems in NP.

NP-completeness

P

NP

?

What does the question mark area look like? (Is it empty?)

NP-complete problems are the “hardest” problems in NP.

NP-completeness

If P 6= NP

P

NP

NP−complete

If P = NP

P

NP

NP−complete

The power of NP-completeness

The power comes from the diverse group of problems, e.g.

• traveling salesman problem

• formula satisfiability

• longest path between two points

• assigning frequencies in a cellphone network

• minimum phylogenetic tree

• minimum energy protein folding

• scheduling a factory

• 3-dimensional ising model

• the game geography

• nearest vector in a lattice

• ...

Either all of these are in P, or none are in P.

How do we show a new problem N is NP-complete?

• Choose a known NP-complete problem K .

• Show that K reduces to N.

K reduces to N means that we can use N as a “subroutine” for solving K.
N easy ⇒ K easy

Contrapositive:
K hard ⇒ N hard

