Numerical analysis of $1\|\sum T_j$ using exact algorithm and heuristics

Huiwen Ma
Haosong Wang
Wenzhu Yu
Introduction

• Problem: $1/\sum T_j$
• NP-hardness
• Paper review: algorithms solving this problem
 • Simple Heuristics:
 • SPT, EDD, and Modified Due Date (MDD)
 • Other Heuristics:
 • Wilkerson, L.J. and Irwin (W-I)
 • Fry et al., Adjacent Pairwise Interchange (API)
 • Holsenback, J.E. and Russell, Net Benefit of Relocation (NBR)
 • Panwalkar, Smith, and Koulamas, (P-S-K)
 • …
• Exact Algorithm:
 • The Pseudo-polynomial Time Algorithm
Pseudo-polynomial Time Algorithm

• I jobs, k = the job with the longest processing time.
• The subsets J(j, l, k): all jobs in the set {j, ..., l} with a processing time \(\leq p_k \).
• \(V(J(j, l, k), t) \): the total tardiness of \(J(j, l, k) \) in an optimal sequence that starts at time \(t \).

Algorithm:

• Initial conditions: \(V(\emptyset, t) = 0; \quad V\{j\}, t) = \max(0, t + p_j - d_j) \)
• Recursive relation:
\[
V(J(j, l, k), t) = \min_{\delta} (V(J(j, k' + \delta, k'), t) + \max(0, C_{k'}(\delta) - d_{k'}) + V(J(k' + \delta + 1, l, k'), C_{k'}(\delta)))
\]
• Where \(k' \) is such that, \(p_{k'} = \max(p_j | j' \in J(j, l, k)) \)
• Optimal value function is \(V\{1, ..., n\}, 0 \).

* cited from Professor Clifford Stein's Lecture Notes
MDD Rule

• Index: $l_i(t) = (t + p_i - d_i)^+ + d_i$
• Select the next job with the smallest index value for processing.
PSK Algorithm

- Ordered set $U(1,2,3,...,n)$ in the SPT order.
- S = the set of scheduled jobs
- $p_j, d_j, c = \sum_{i \in S} p_i$.

Step 1. If U contains only 1 job, schedule it in the last position in S and go to Step 9. Otherwise label the first job of U as the active job i.

Step 2. If $c+p_i \geq d_i$, go to Step 8.

Step 3. Select the next job of U and label it as job j.

Step 4. If $d_i \leq c + p_j$, go to Step 8.

Step 5. If $d_i \leq d_j$, go to Step 7.

Step 6. Job j becomes the active job i. If it is the last job in U, go to Step 8. Otherwise, go to Step 2.

Step 7. If j is the last job in U, go to Step 8. Otherwise, go to Step 3.

Step 8. Remove job i from U and put it in the last position in S. Set $c = c + p_i$ and go to Step 1.

Step 9. Calculate total tardiness for the sequence and stop the algorithm.
P-S-K heuristic

• Other Heuristics
 • Wilkerson-Irvin works better when EDD is optimal
 • API uses 9 switching strategies and generates 9 sequences
 • Holsenback-Russell starts with MDD, and uses net benefit of relocation

• Panwalkar et al. concluded that the P-S-K algorithm performs better than the W-I, H-R, and API heuristics for a wide range of problems, especially when due dates become tight.
Algorithm Properties

- **When works the best**
 - **MDD**
 - At most 1 job has positive tardiness or all processing times are equal
 - MDD reduces to the EDD rule when processing times are equal, and to the SPT rule when due dates are equal.
 - **PSK**
 - All jobs have positive tardiness or all due dates are equal, similar to SPT
 - *Pseudo-polynomial time algorithm*
 - Optimal

- **Cost-worst case scenario**
 - **MDD**
 - $O(n \log n)$
 - **PSK**
 - Performs better than the pseudo-polynomial, but worse than MDD
 - *Pseudo-polynomial time algorithm*
 - $O[n^4 \times \Sigma p_j]$
Computation Setup

- Implemented in Java
- Algorithms
 - MDD
 - PSK
 - Pseudo-polynomial time algorithm (exact algorithm)
 - Using a recursive function to implement the dynamic programming routine.
- Sorting is implemented by a standard java.collections.sort method (essentially a mergesort with complexity fewer than $O(n\log n)$)
Computation Setup

- Implemented in *Java*
- Algorithms
 - MDD
 - PSK
 - Pseudo-polynomial time algorithm (exact algorithm)
 - Using a *recursive function* to implement the dynamic programming routine.
- Sorting is implemented by a standard *java.collections.sort* method (essentially a *mergesort* with complexity fewer than $O(n\log n)$)

(randomly generated instances)

1. MDD
2. PSK
3. Pseudo-polynomial

- Schedule decision
- Total Tardiness
- CPU Time (milliseconds)
Random Instances Generation

- Generated by the method suggested by *Potts and Van Wassenhove*.
- Two instance characteristics control factors
 - RDD (Range of Due Date) \{0.2, 0.4, 0.6, 0.8, 1.0\}
 - Controls the variance of different due date
 - TF (Tardiness Factor) \{0.2, 0.4, 0.6, 0.8, 1.0\}
 - Controls the tightness of schedules

Let \(p_{\text{max}} \) be the maximum number of jobs. The following steps are used to generate each job's due date:

1. Compute the total processing time \(P = \sum_{i=1}^{n} p_i \).
2. Select values of RDD and TF from the set \{0.2, 0.4, 0.6, 0.8, 1.0\}.
3. Select an integer due date \(d_i \) from the uniform distribution \([P(1-\text{TF}-1/2\times\text{RDD}), P(1-\text{TF}+1/2\times\text{RDD})]\).

Due date uniformly distributed
Results

• Performance: total tardiness and computational time
• Total tardiness of pseudo-polynomial algorithm is the benchmark of accuracy.
• Tardiness error = \(\frac{\text{tardiness} - \text{optimal tardiness}}{\text{optimal tardiness}} \)
Results

• Performance: total tardiness and computational time
• Total tardiness of pseudo-polynomial algorithm is the benchmark of accuracy.
• Tardiness error = \(\frac{\text{tardiness} - \text{optimal tardiness}}{\text{optimal tardiness}} \)

<table>
<thead>
<tr>
<th></th>
<th>MDD</th>
<th>PSK</th>
<th>Pseudo-polynomial Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tardiness error</td>
<td>time</td>
<td>tardiness error</td>
</tr>
<tr>
<td>10 jobs</td>
<td>0.3783</td>
<td>0.008</td>
<td>0.2728</td>
</tr>
<tr>
<td>15 jobs</td>
<td>0.4628</td>
<td>0.008</td>
<td>0.3330</td>
</tr>
<tr>
<td>20 jobs</td>
<td>0.4837</td>
<td>0.024</td>
<td>0.3362</td>
</tr>
<tr>
<td>25 jobs</td>
<td>0.5024</td>
<td>0.052</td>
<td>0.3505</td>
</tr>
<tr>
<td>Mean</td>
<td>0.45687</td>
<td>0.023</td>
<td>0.32317</td>
</tr>
</tbody>
</table>

• Tardiness MDD>PSK>Pseudo-polynomial time Algorithm
• Time MDD<PSK<Pseudo-polynomial time Algorithm
Results (cont’d)

- **Tardiness error** with respect to **number of Jobs**
 - Insight: As # jobs increases, error increases, difference between two algorithms also increases
 - Reason: Problem becomes combinatorial complex when # of job increases. MDD starts to lose effectiveness.

![Bar chart showing MDD and PSK tardiness error for 10, 15, 20, and 25 jobs.](chart.png)
Results (cont’d)

• **Computational time** with respect to **number of jobs**

 • Insight: CPU time of Pseudo-polynomial time algorithm is highly sensitive to number of jobs, which demonstrates the NP-hardness of the problem to solve to optimality.
Results (cont’d)

- **Tardiness error** with respect to **Tightness of instances (TF)**
 - **10 jobs case**
 - **Insight:** As TF increases, error increases, difference between two algorithms also increases. PSK starts to become much more effective compared to MDD as instances become tighter in due date.
Conclusions

• Generally, we get
 - Tardiness MDD > PSK > Pseudopolynomial Algorithm
 - Time MDD < PSK < Pseudopolynomial Algorithm
• The difference in accuracy between MDD and PSK will become larger as the number of jobs increase.
• Both the two heuristics become less accurate when the number of jobs is large.
• PSK will perform much better than MDD in accuracy especially when the tardiness factor is large.
• Overall, PSK has an average 32.3% error rate; MDD has an average 45.6% error rate. Neither does these two heuristics have very good performance. While considering their efficiencies in computational efforts, PSK would still be applicable in real applications.
Thank you