Average Completion Time on Multiple Machines

- $P||\Sigma C_J \text{SPT is optimal.}$
- $P||\sum w_j C_j \text{Is WSPT optimal?}|$

Example

Average Completion Time on Multiple Machines

- $P||\Sigma C_J|$ SPT is optimal.
- $P||\sum w_j C_j|$ Is WSPT optimal?

Example

- $\bullet P||\Sigma w_j C_j$ is NP-complete.
- WSPT is a $(1+\sqrt{2})/2$ -approximation for $P||\sum w_j C_j$

$$|R|| \Sigma C_j$$

- Can be solved as a matching problem.
- Left side node for each job j
- Right hand side node for the k th from last job on machine i

Example

$Q|\operatorname{pmtn}| \Sigma C_j$

• Algorithm is SRPT-FM. Shortest Remaining Processing Time on the Fastest Machines.

• What about preemption in other models?

• P – doesn't help

 \bullet R - NP-complete