Stochastic Scheduling

Models Real World Uncertainty

- processing times
- arrivals
- machine availability
- . . .

Our Model:

- Distribution over job data known in advance.
- Realization only known when job arrives/completes or when it can be inferred.

Example:

$$p_j = \begin{cases} 1 & \Pr = 1/2 \\ 3 & \Pr = 1/2 \end{cases}$$

After 1 unit of time, if the job doesn't complete, we know that it will take 3 units.

Example

$$p_{1} = \begin{cases} 1 & \Pr = 1/2 \\ 9 & \Pr = 1/2 \end{cases}$$
$$p_{2} = \begin{cases} 4 & \Pr = 1/4 \\ 6 & \Pr = 1/2 \\ 8 & \Pr = 1/4 \end{cases}$$

Problem: $1 || \Sigma C_j$

Question: What is the right algorithm? Is there still a simple ordering rule

Comparing random variables

- Density Function: f(x)
- Distribution Function: $F(x) = P(X \le t) = \int_0^t f(x) dx$

Definitions of $X_1 \succeq X_2$

- Larger in Expectation: $E(X_1) \ge E(X_2)$
- Stochastically larger: $\forall t : P(X_1 > t) \ge P(X_2 > t)$
- Almost surely larger: $P(X_1 \ge X_2) = 1$

Another example, $P||C_{\max}$

Case 1: $p_1 = p_2 = 1$ Case 2: $p_1 = 1$ $p_2 = \begin{cases} 0 & \Pr = 1/2 \\ 2 & \Pr = 1/2 \end{cases}$

Case 3:

$$p_1 = p_2 = \begin{cases} 0 & \Pr = 1/2 \\ 2 & \Pr = 1/2 \end{cases}$$

Case 4: p_1, p_2 both uniform in [0, 2].

Objective Values

- **1.** $C_{\max} = 1$
- **2.** $C_{\text{max}} = 3/2$
- **3.** $C_{\text{max}} = 3/2$
- **4.** $C_{\text{max}} = 4/3$

Different Models of Stochastic Scheduling

Models of Knowledge

- static: Choose order of jobs based on distribution only
- dynamic: Choose order of jobs based on knowledge gained when running Also consider Preemption vs. Non-preemption

Example:

- $1 || \Sigma U_j$
- 3 jobs with same distribution:

$$p_j = \begin{cases} 2 & \Pr = 1/2 \\ 8 & \Pr = 1/2 \end{cases}$$

$$d_j = \begin{cases} 1 & \Pr = 1/2 \\ 5 & \Pr = 1/2 \end{cases}$$

What is the expected objective value for:

- static non-preemptive
- dynamic non-preemptive
- dynamic preemptive

Another Example

• **Problem:** $1 | \text{pmtn} | \sum C_j$

• Jobs:

$$p_{1} = \begin{cases} 1 & \Pr = 1/2 \\ 3 & \Pr = 1/2 \end{cases}$$
$$p_{2} = \begin{cases} 2 & \Pr = 1/2 \\ 4 & \Pr = 1/2 \end{cases}$$
$$p_{3} = \begin{cases} 1 & \Pr = 1/2 \\ 7 & \Pr = 1/2 \end{cases}$$