
Minimizing the Number of Tardy Jobs

1||∑ Uj

Example
j pj dj

1 10 10

2 2 11

3 7 13

4 4 15

5 8 20

Ideas:

• Need to choose a subset of jobs S that meet their deadlines.

• Schedule the jobs that meet their deadlines in EDD order (Why?)

• Schedule the remaining jobs in an arbitrary order.

Question: How do you choose the subset?



Algorithm for 1|| ∑ Uj

• Give an incremental algorithm

• Consider jobs in deadline order

• Invariant: Maintain a maximum cardinality set of jobs that meet their

deadlines, among such sets, choose the one with with the smallest total

amount of processing time.



Algorithm for 1|| ∑ Uj

• Give an incremental algorithm

• Consider jobs in deadline order

• Invariant: Maintain a maximum cardinality set of jobs that meet their

deadlines, among such sets, choose the one with with the smallest total

amount of processing time.

Algorithm

• Sort jobs by deadlines; S = ∅

• For each job j in deadline order

– S = S ∪ {j}
– if j doesn’t meet it’s deadline when S is scheduled

∗ S = S − { job in S with largest processing time }



Analysis

• Run time

– Need to sort – O(n log n)

– Need to maintain the schedule for S and delete the job with largest

processing time. (Maintain a set of numbers doing insert, delete and

delete max operations).



Analysis

• Run time

– Need to sort – O(n log n)

– Need to maintain the schedule for S and delete the job with largest

processing time. (Maintain a set of numbers doing insert, delete and

delete max operations). – Use a priority queue, each operations is

O(log n) time.

Analysis: Proof by Induction. After each step k , let Sk denote S .

• Sk schedules a maximum sized subset of { 1,. . . ,k }

• Among all such subsets Sk is the one with the minimum total processing

time.



Another Example

j pj dj

1 3 5

2 4 7

3 2 8

4 6 10

5 6 11

6 1 14

7 5 15



Special Case of a common deadline

• 1||∑ Uj is easy.

•What about 1||∑ wjUj

Example
j pj wj

1 10 10

2 20 50

3 30 20

D is 40.

•We are choosing a minimum weight subset of jobs that miss their dead-

line

• Equivalently: we are choosing a maximum weight subset of jobs that

make their dealines.

• Equivalently: Choosing a maximum weight set of jobs that fit in a “bin”

of certain size.



Knapsack

max
∑
j

wjxj

s.t.
∑
j

pjxj ≤ D

A one constraint lp, a knapsack problem.

• If you can take objects fractionally, then the greedy algorithm ( wj/pj )

is optimal.

•What about the integral (non-preemptive case).

Example
j pj wj

1 11 12

2 9 9

3 90 89

D is 100.



Solving Knapack Via Dynamic Programming

1. Non-polynomial. We will explicitly solve the problem for all possible

values of either time or weight (in this example time.)

2. Polynomial would be polynomial in n, m, log W, log D , where W = maxj wj

.

3. Running time will be polynomial in n, m,W, D . Called pseudopolyno-

mial.

4. Reasonable approach when W and/or D is not too large.

Main Ideas:

• Parameterize solution, and define optimal solutions of a certain size in

terms of solutions with smaller parameter values.

• Build up a table of solutions, eventually obtaining the solution for the

desired parameter value.



DP for Knapsack: maximum weight competing by deadline

• f (j, t) will be the best way to schedule jobs 1, . . . , j with t or less total

processing time.

• Best means maximum total weight.

•What is f (n, D) ?

•Maximum weight way to schedule all the jobs using at most D total

processing time.

• This is the problem we want to solve.



DP

To schedule jobs 1, . . . , j using t total processing time there are two

cases:

• job j is not scheduled.

• job j is scheduled



DP

To schedule jobs 1, . . . , j using t total processing time there are two

cases:

• job j is not scheduled.

• job j is scheduled

• If j is not scheduled, then the optimal solution for 1, . . . , j is the same

as the optimal solution for 1, . . . , j − 1 , hence f (j, t) = f (j − 1, t)

• If j is scheduled, then there are two subcases:

– j was also scheduled using t− 1 time units, hence f (j, t) = f (j, t− 1)

– j was not scheduled when we used t− 1 time units. We need to

add j to the schedule, hence we have to look at the optimal schedule

using t− pj units of processing, hence: f (j, t) = f (j − 1, t− pj) + wj .

We don’t know which case happens, so we try all and take the maximum

f (j, t) = max{f (j − 1, t), f (j, t− 1), f (j − 1, t− pj) + wj}



Example

f (j, t) = max{f (j − 1, t), f (j, t− 1), f (j − 1, t− pj) + wj}

j pj wj

1 11 12

2 9 9

3 90 89

D is 100.


