Minimizing the Number of Tardy Jobs

1| = U;

Example

| pj| 4

10|10
211

7113

4115

820

U RN W N =<

Ideas:
e Need to choose a subset of jobs S that meet their deadlines.
e Schedule the jobs that meet their deadlines in EDD order (Why?)

® Schedule the remaining jobs in an arbitrary order.

Question: How do you choose the subset?

Algorithm for 1||=U;

e Give an incremental algorithm
e Consider jobs in deadline order

e Invariant: Maintain a maximum cardinality set of jobs that meet their
deadlines, among such sets, choose the one with with the smallest total
amount of processing time.

Algorithm for 1||=U;

e Give an incremental algorithm
e Consider jobs in deadline order

e Invariant: Maintain a maximum cardinality set of jobs that meet their
deadlines, among such sets, choose the one with with the smallest total
amount of processing time.

Algorithm
e Sort jobs by deadlines; S = ()
e For each job ; in deadline order
-5 =5U{j}
—if 7 doesn’t meet it’s deadline when S is scheduled

x S =S5 —{ jobin S with largest processing time }

Analysis

e Run time

— Need to sort — O(nlogn)

— Need to maintain the schedule for S and delete the job with largest
processing time. (Maintain a set of numbers doing insert, delete and
delete max operations).

Analysis

e Run time

— Need to sort — O(nlogn)

— Need to maintain the schedule for S and delete the job with largest
processing time. (Maintain a set of numbers doing insert, delete and
delete max operations). — Use a priority queue, each operations is
O(logn) time.

Analysis: Proof by Induction. After each step &, let S, denote S5 .
e S;. schedules a maximum sized subset of { 1,...,k }

e Among all such subsets 5) is the one with the minimum total processing
time.

Another Example

d]5780145

™ = - -
UM3426615
S AN N 0 O b

Special Case of a common deadline

e I||>U; is easy.
e What about 1||>w;U;

Example
ANZAKT
10|10
20 | 50
30 | 20

is 40.

T w o o

e We are choosing a minimum weight subset of jobs that miss their dead-
line

e Equivalently: we are choosing a maximum weight subset of jobs that
make their dealines.

e Equivalently: Choosing a maximum weight set of jobs that fit in a “bin”
of certain size.

Knapsack

max), W;x,;
J

s.t. Y pjxz; <D
J

A one constraint lp, a knapsack problem.

e If you can take objects fractionally, then the greedy algorithm (w,;/p,)
is optimal.

e What about the integral (non-preemptive case).

Example
J| pj|w
1/11(12
2/ 99
319089

D 1s 100.

Solving Knapack Via Dynamic Programming

1. Non-polynomial. We will explicitly solve the problem for all possible
values of either time or weight (in this example time.)

2. Polynomial would be polynomial in n,m,log W, log D , where W = max; w;

3. Running time will be polynomial in n,m,W, D . Called pseudopolyno-
mial.

4. Reasonable approach when 1/ and/or D is not too large.

Main Ideas:

e Parameterize solution, and define optimal solutions of a certain size in
terms of solutions with smaller parameter values.

e Build up a table of solutions, eventually obtaining the solution for the
desired parameter value.

DP for Knapsack: maximum weight competing by deadlir

e f(j,t) will be the best way to schedule jobs 1,...,7 with ¢ or less total
processing time.

e Best means maximum total weight.

e What is f(n,D) ?

e Maximum weight way to schedule all the jobs using at most [) total
processing time.

e This is the problem we want to solve.

DP

To schedule jobs 1,...,7 using { total processing time there are two
cases:

® job ; is not scheduled.
e job j is scheduled

DP

To schedule jobs 1,...,7 using { total processing time there are two
cases:

® job ; is not scheduled.
e job j is scheduled

e If ; is not scheduled, then the optimal solution for 1,....; is the same
as the optimal solution for 1,....7— 1, hence f[(j,)= f(j—1,1)

e If ; is scheduled, then there are two subcases:

— j was also scheduled using ¢ — 1 time units, hence f(j,t) = f(j,t —1)

— 7 was not scheduled when we used ¢ —1 time units. We need to
add ; to the schedule, hence we have to look at the optimal schedule
using ¢ —p; units of processing, hence: f(j.1)=f(j — 1.t —p;) +w, .

We don’t know which case happens, so we try all and take the maximum

f(]v t) — Hl&X{f(j o 17t>7 f(jat_ 1)? f(] o 17t _pj) +w,7}

Example

f(])t) :max{f(]—l,t), f(]at_1>7 f(]_17t_p])+wj}

Dj | W
1112
91 9
90 | 89

D is 100.

W N .

