### Minimizing the Number of Tardy Jobs

#### $1 || \Sigma U_j$

| Example |          |         |           |  |  |
|---------|----------|---------|-----------|--|--|
|         | j        | $p_{j}$ | $d_{j}$   |  |  |
|         | 1        | 10      | 10        |  |  |
|         | <b>2</b> | 2       | 11        |  |  |
|         | 3        | 7       | <b>13</b> |  |  |
|         | 4        | 4       | 15        |  |  |
|         | <b>5</b> | 8       | <b>20</b> |  |  |

#### **Ideas:**

- Need to choose a subset of jobs S that meet their deadlines.
- Schedule the jobs that meet their deadlines in EDD order (Why?)
- Schedule the remaining jobs in an arbitrary order.

Question: How do you choose the subset?

# Algorithm for $1 || \Sigma U_j$

- Give an incremental algorithm
- Consider jobs in deadline order
- Invariant: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with with the smallest total amount of processing time.

# Algorithm for $1|| \Sigma U_j$

- Give an incremental algorithm
- Consider jobs in deadline order
- Invariant: Maintain a maximum cardinality set of jobs that meet their deadlines, among such sets, choose the one with with the smallest total amount of processing time.

#### Algorithm

- Sort jobs by deadlines;  $S = \emptyset$
- For each job j in deadline order
  - $-S = S \cup \{j\}$
  - if j doesn't meet it's deadline when S is scheduled \*  $S = S - \{ \text{ job in S with largest processing time } \}$

# Analysis

#### • Run time

- -Need to sort  $O(n \log n)$
- Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations).

# Analysis

#### • Run time

- -Need to sort  $O(n \log n)$
- Need to maintain the schedule for S and delete the job with largest processing time. (Maintain a set of numbers doing insert, delete and delete max operations). Use a priority queue, each operations is  $O(\log n)$  time.

Analysis: Proof by Induction. After each step k, let  $S_k$  denote S.

- $S_k$  schedules a maximum sized subset of  $\{1, \ldots, k\}$
- Among all such subsets  $S_k$  is the one with the minimum total processing time.

### Another Example



## Special Case of a common deadline

- $1 || \Sigma U_j$  is easy.
- What about  $1 || \sum w_j U_j$

#### Example

- j
   pj
   wj

   1
   10
   10

   2
   20
   50

   3
   30
   20
- *D* is 40.
- We are choosing a minimum weight subset of jobs that miss their deadline
- Equivalently: we are choosing a maximum weight subset of jobs that make their dealines.
- Equivalently: Choosing a maximum weight set of jobs that fit in a "bin" of certain size.

### Knapsack

$$\max \sum_{j} w_{j} x_{j}$$
s.t.  $\sum_{j} p_{j} x_{j} \le D$ 

A one constraint lp, a knapsack problem.

- $\bullet$  If you can take objects fractionally, then the greedy algorithm (  $w_j/p_j$  ) is optimal.
- What about the integral (non-preemptive case).

Example

| j        | $p_j$ | $w_{j}$ |
|----------|-------|---------|
| 1        | 11    | 12      |
| <b>2</b> | 9     | 9       |
| 3        | 90    | 89      |
| D        | is 1  | .00.    |

### Solving Knapack Via Dynamic Programming

- 1. Non-polynomial. We will explicitly solve the problem for all possible values of either time or weight (in this example time.)
- 2. Polynomial would be polynomial in  $n, m, \log W, \log D$ , where  $W = \max_j w_j$
- 3. Running time will be polynomial in n, m, W, D. Called pseudopolynomial.
- 4. Reasonable approach when W and/or D is not too large.

#### Main Ideas:

٠

- Parameterize solution, and define optimal solutions of a certain size in terms of solutions with smaller parameter values.
- Build up a table of solutions, eventually obtaining the solution for the desired parameter value.

### DP for Knapsack: maximum weight competing by deadlin

- f(j,t) will be the best way to schedule jobs  $1, \ldots, j$  with t or less total processing time.
- Best means maximum total weight.
- What is f(n, D) ?
- Maximum weight way to schedule all the jobs using at most D total processing time.
- This is the problem we want to solve.

#### $\mathbf{DP}$

To schedule jobs  $1, \ldots, j$  using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled

#### $\underline{\mathbf{DP}}$

To schedule jobs  $1, \ldots, j$  using t total processing time there are two cases:

- job j is not scheduled.
- job j is scheduled
- If j is not scheduled, then the optimal solution for  $1, \ldots, j$  is the same as the optimal solution for  $1, \ldots, j-1$ , hence f(j,t) = f(j-1,t)
- If j is scheduled, then there are two subcases:
  - -j was also scheduled using t-1 time units, hence f(j,t) = f(j,t-1)
  - -j was not scheduled when we used t-1 time units. We need to add j to the schedule, hence we have to look at the optimal schedule using  $t-p_j$  units of processing, hence:  $f(j,t) = f(j-1,t-p_j) + w_j$ .

We don't know which case happens, so we try all and take the maximum

$$f(j,t) = \max\{f(j-1,t), f(j,t-1), f(j-1,t-p_j) + w_j\}$$

# Example

$$f(j,t) = \max\{f(j-1,t), f(j,t-1), f(j-1,t-p_j) + w_j\}$$

| j        | $p_{j}$ | $w_{j}$ |
|----------|---------|---------|
| 1        | 11      | 12      |
| <b>2</b> | 9       | 9       |
| 3        | 90      | 89      |
| D        | is 1    | .00.    |