Gittins Index for Scheduling

Setting

- Problem, one machine, minimize discouted weighted completion time, discount factor β
- Jobs:
- Distributions on processing time, $p_{j}(k)$ is the probability that job j takes k units
- weight w_{j}
- if job j completes at time t, the payoff is $w_{j} \beta^{t}$.
- Objective: max $E\left(\Sigma w_{j} \beta^{C_{j}}\right)$.

	$\begin{array}{lllll} & j & p_{j}(1) & p_{j}(2) & p_{j}(3)\end{array} w_{j}$				
Example:	1	$1 / 2$	$1 / 2$	0	8
	2	$1 / 4$	0	$3 / 4$	1
	3	$2 / 3$	$1 / 6$	$1 / 6$	3

What order do we run the jobs in ?

Rule for Scheduling

- Let x_{j} be the amount of time that job j has already been processed.
- Let X_{j} be a r.v. for the amount of time that job j has already been processed.
- Compute the Gittens index of each job by formula below.
- Run the job with highest Gittens index and repeat.

$$
G_{j}\left(x_{j}\right)=\max _{\tau>0} \frac{\sum_{s=1}^{\tau} \beta^{s} w_{j} P\left(X_{j}=x_{j}+s\right)}{\sum_{s=1}^{\tau} \beta^{s} P\left(X_{j} \geq x_{j}+s\right)}
$$

Calculations, $\beta=1 / 2$

$$
\begin{aligned}
& \begin{array}{llllll}
& \begin{array}{lllll}
& p_{j}(1) & p_{j}(2) & p_{j}(3) & w_{j} \\
\cline { 2 - 6 } & \mathbf{1} & 1 / 2 & 1 / 2 & 0 \\
8 \\
& 2 & 1 / 4 & 0 & 3 / 4 \\
1 & 1 \\
& 3 & 2 / 3 & 1 / 6 & 1 / 6
\end{array} & 3
\end{array} \\
& G_{j}\left(x_{j}\right)=\max _{\tau>0} \frac{\sum_{s=1}^{\tau} \beta^{s} w_{j} P\left(X_{j}=x_{j}+s\right)}{\sum_{s=1}^{\tau} \beta^{s} P\left(X_{j} \geq x_{j}+s\right)}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(X_{1}=1\right) & =1 / 2 \\
\operatorname{Pr}\left(X_{1}=2\right) & =1 / 2 \\
\operatorname{Pr}\left(X_{1} \geq 1\right) & =1 \\
\operatorname{Pr}\left(X_{1} \geq 2\right) & =1 / 2 \\
G_{1}(0) & =\max _{\tau>0} \frac{\sum_{s=1}^{\tau}(1 / 2)^{s} 8 P\left(X_{1}=s\right)}{\sum_{s=1}^{\tau}(1 / 2)^{s} P\left(X_{1} \geq s\right)} \\
& =\max \left(\frac{1 / 2 \cdot 8 \cdot 1 / 2}{1 / 2 \cdot 1}, \frac{1 / 2 \cdot 8 \cdot 1 / 2+1 / 4 \cdot 8 / c \cot 1 / 2}{1 / 2 \cdot 1+1 / 4 \cdot 1 / 2}\right) \\
& =\max (4,3 /(5 / 8)) \\
& =24 / 5
\end{aligned}
$$

Calculations, $\beta=1 / 2$

$$
\text { Example: } \begin{array}{lllll}
j & p_{j}(1) & p_{j}(2) & p_{j}(3) & w_{j} \\
\cline { 2 - 6 } & \mathbf{1} & \mathbf{1} / \mathbf{2} & \mathbf{1} / \mathbf{2} & \mathbf{0} \\
\mathbf{8} \\
\mathbf{2} & \mathbf{1} / \mathbf{4} & \mathbf{0} & \mathbf{3} / \mathbf{4} & \mathbf{1} \\
& \mathbf{3} & \mathbf{2} / \mathbf{3} & \mathbf{1} / \mathbf{6} & \mathbf{1} / \mathbf{6} \\
& & \mathbf{3} \\
& & & & G_{j}\left(x_{j}\right)=\max _{\tau>0} \frac{\Sigma_{s=1}^{\tau} \beta^{s} w_{j} P\left(X_{j}=x_{j}+s\right)}{\sum_{s=1}^{\tau} \beta^{s} P\left(X_{j} \geq x_{j}+s\right)}
\end{array}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(X_{2}=1\right) & =1 / 4 \\
\operatorname{Pr}\left(X_{2}=3\right) & =3 / 4 \\
\operatorname{Pr}\left(X_{2} \geq 1\right) & =1 \\
\operatorname{Pr}\left(X_{2} \geq 2\right) & =3 / 4 \\
\operatorname{Pr}\left(X_{2} \geq 3\right) & =3 / 4 \\
G_{2}(0) & =\max _{\tau>0} \frac{\sum_{s=1}^{\tau}(1 / 2)^{s} 1 P\left(X_{2}=s\right)}{\sum_{s=1}^{\tau}(1 / 2)^{s} P\left(X_{2} \geq s\right)} \\
& =\max \left(\frac{1 / 2 \cdot 1 \cdot 1 / 4}{1 / 2 \cdot 1}, \frac{1 / 2 \cdot 1 \cdot 1 / 4+1 / 8 \cdot 1 \cdot 3 / 4}{1 / 2 \cdot 1+1 / 8 \cdot 3 / 4}\right. \\
& =\max (1 / 4,7 / 19) \\
& =7 / 19
\end{aligned}
$$

Calculations, $\beta=1 / 2$

$$
\begin{aligned}
& G_{j}\left(x_{j}\right)=\max _{\tau>0} \frac{\sum_{s=1}^{\tau} \beta^{s} w_{j} P\left(X_{j}=x_{j}+s\right)}{\sum_{s=1}^{\tau} \beta^{s} P\left(X_{j} \geq x_{j}+s\right)}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(X_{3}=1\right) & =2 / 3 \\
\operatorname{Pr}\left(X_{3}=2\right) & =1 / 6 \\
\operatorname{Pr}\left(X_{3}=3\right) & =1 / 6 \\
\operatorname{Pr}\left(X_{3} \geq 1\right) & =1 \\
\operatorname{Pr}\left(X_{3} \geq 2\right) & =1 / 3 \\
\operatorname{Pr}\left(X_{3} \geq 3\right) & =1 / 6 \\
G_{3}(0) & =\max _{\tau>0} \frac{\sum_{s=1}^{\tau}(1 / 2)^{s} 3 P\left(X_{3}=s\right)}{\sum_{s=1}^{\tau}(1 / 2)^{s} P\left(X_{3} \geq s\right)} \\
& =\max \left(\frac{1 / 2 \cdot 3 \cdot 2 / 3}{1 / 2 \cdot 1}, \frac{1 / 2 \cdot 3 \cdot 2 / 3+1 / 4 \cdot 3 \cdot 1 / 6}{1 / 2 \cdot 1+1 / 4 \cdot 1 / 3}, \frac{1 / 2 \cdot 3 \cdot 2 / 3+1 / 4 \cdot 3 \cdot 1 / 6+1 / 8 \cdot 3 \cdot 1 /}{1 / 2 \cdot 1+1 / 4 \cdot 1 / 3+1 / 8 \cdot 1 / 6}\right. \\
& =\max (2,27 / 14,57 / 29) \\
& =2
\end{aligned}
$$

Summary:

$$
\begin{aligned}
& G_{1}(0)=24 / 5 \\
& G_{2}(0)=7 / 19 \\
& G_{3}(0)=2
\end{aligned}
$$

- Choose job 1.
- The max came for job 1 running for 2 units, so we run it to completion.
- Next we look at 2 and 3. In principal we could recaluculate, but it won't change anything here. So we choose job 3. Job 3's max comes from running for 1 unit. So we only run for 1 unit and then recalculate.
- $G_{3}(1)=\max (3 / 2,9 / 5)$, so we run 3 to completion.
- Now run 2.

More general setting

We could have payoffs at each time period: $w_{j}\left(x_{j}\right)$. Gittins index is now:

$$
G_{j}\left(x_{j}\right)=\max _{\tau \geq 0} \frac{E\left(\sum_{s=0}^{\tau-1} \beta^{s+1} w_{j} P\left(X_{j}(s)\right) \mid X_{j}(0)=x_{j}\right)}{E\left(\sum_{s=0}^{\tau-1} \beta^{s+1} P\left(X_{j}(0)=x_{j}\right)\right.}
$$

