Basics of Algorithm Analysis

Problem vs. Instance vs. Algorithm vs. Solution

- Problem : minimize makespan on 2 machines $P \| C_{\max }$
- Instance: 5 jobs with processing times ($4,1,8,5,6$)
- Algorithm: Alternate putting the jobs on machine 1 and machines 2.
- Solution: Machine 1 has jobs J_{1}, J_{3}, J_{5} with total processing time 18, machine 2 has jobs J_{2}, J_{4} with total processing time 6. Makespan is 18.

Goals:

- We want to develop algorithms that, on "any" instance, will produce good solutions.
- We want to understand how our algorithms perform, so that, given a new instance, we can predict how long they will take and what kind of solution they return.

Basics of Algorithm Analysis

Running Time: Given an algorithm, and an input of size n, we wish to know the running time as a function of n.

- We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).
- We work in the RAM model of computation. All "reasonable" operations take " 1 " unit of time. (e.g. $+,{ }^{*},-, /$, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

- Best case (seldom used)
- Average case (used if we understand the average)
- Worst case (used most often)

We measure as a function of n, and ignore low order terms.

- $5 n^{3}+n-6$ becomes n^{3}
- $8 n \log n-60 n$ becomes $n \log n$
- $2^{n}+3 n^{4}$ becomes 2^{n}

Asymptotic notation

big-O

$$
\begin{aligned}
O(g(n))=\{f(n): & \text { there exist positive constants } c \text { and } n_{0} \text { such that } \\
& \left.0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\} .
\end{aligned}
$$

Alternatively, we say

$$
\begin{aligned}
& f(n)=O(g(n)) \text { if there exist positive constants } c \text { and } n_{0} \text { such that } \\
& \\
& \left.0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Informally, $f(n)=O(g(n))$ means that $f(n)$ is asymptotically less than or equal to $g(n)$.

Classification We use these to classify algorithms into classes, e.g. n, n^{2}, $n \log n, 2^{n}$.

Simple Rules

- Nested loops multiply (even when the inner loop is from 1 to the outer loop value).
- Sequential loops add
- Repeated halving is linear.

Examples

FindMax (A, n)
$1 / / A$ is an array of length n
2 maxval $=A[1]$
3 for $i=2$ to n
4 if $(A[i]>$ maxval $)$
$5 \quad$ maxval $=A[i]$
6 return maxval
Running time is $O(n)$

Examples

```
MatMult \((A, B, C, p, q, r)\)
\(1 / / A\) is \(p \times q ; B\) is \(q \times r ; C\) is \(p \times r\)
2 for \(i=1\) to \(p\)
\(3 \quad\) for \(j=1\) to \(r\)
\(4 \quad C[i, j]=0\)
\(5 \quad\) for \(k=1\) to \(q\)
\(6 \quad C[i, j]=C[i, j]+A[i, j] * B[k, j]\)
```

Running Time is $O(p q r)$. If matrices are $n \times n$, then $O\left(n^{3}\right)$.

Some Things to Know

- Sorting n numbers takes $O(n \log n)$ time.
- Finding a shortest path with non-negative weights in a graph with n nodes and m edges takes $O(m \log n)$ time.
- You can use a Priority Queue Data Structure to maintain a set of n numbers, and insert and delete the maximum in $O(\log n)$ time per operation.

