Problem vs. Instance vs. Algorithm vs. Solution

- **Problem**: minimize makespan on 2 machines $P\|C_{max}$
- **Instance**: 5 jobs with processing times $(4, 1, 8, 5, 6)$
- **Algorithm**: Alternate putting the jobs on machine 1 and machines 2.
- **Solution**: Machine 1 has jobs J_1, J_3, J_5 with total processing time 18, machine 2 has jobs J_2, J_4 with total processing time 6. Makespan is 18.

Goals:

- We want to develop algorithms that, on “any” instance, will produce good solutions.
- We want to understand how our algorithms perform, so that, given a new instance, we can predict how long they will take and what kind of solution they return.
Basics of Algorithm Analysis

Running Time: Given an algorithm, and an input of size n, we wish to know the running time as a function of n.

- We measure running time as a function of n, the size of the input (in bytes assuming a reasonable encoding).
- We work in the RAM model of computation. All “reasonable” operations take “1” unit of time. (e.g. +, *, -, /, array access, pointer following, writing a value, one byte of I/O...)

What is the running time of an algorithm

- Best case (seldom used)
- Average case (used if we understand the average)
- Worst case (used most often)

We measure as a function of n, and ignore low order terms.

- $5n^3 + n - 6$ becomes n^3
- $8n \log n - 60n$ becomes $n \log n$
- $2^n + 3n^4$ becomes 2^n
Asymptotic notation

big-O

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}. \]

Alternatively, we say

\[f(n) = O(g(n)) \text{ if there exist positive constants } c \text{ and } n_0 \text{ such that} \]
\[0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}

Informally, \(f(n) = O(g(n)) \) means that \(f(n) \) is asymptotically less than or equal to \(g(n) \).

Classification We use these to classify algorithms into classes, e.g. \(n, n^2, n \log n, 2^n \).
Simple Rules

- Nested loops multiply (even when the inner loop is from 1 to the outer loop value).
- Sequential loops add
- Repeated halving is linear.
Examples

FindMax \((A, n) \)

1 // \(A \) is an array of length \(n \)
2 \(\text{maxval} = A[1] \)
3 \text{for} \(i = 2 \ \text{to} \ n \)
4 \text{if} \ (A[i] > \text{maxval})
5 \(\text{maxval} = A[i] \)
6 \text{return} \ \text{maxval}

Running time is \(O(n) \)
Examples

MatMult \((A, B, C, p, q, r) \)

1 \(// \ A \ is \ p \times q; \ B \ is \ q \times r; \ C \ is \ p \times r \)
2 for \(i = 1 \) to \(p \)
3 for \(j = 1 \) to \(r \)
4 \(C[i, j] = 0 \)
5 for \(k = 1 \) to \(q \)
6 \(C[i, j] = C[i, j] + A[i, j] \times B[k, j] \)

Running Time is \(O(pqr) \). If matrices are \(n \times n \), then \(O(n^3) \).
Some Things to Know

• Sorting n numbers takes $O(n \log n)$ time.

• Finding a shortest path with non-negative weights in a graph with n nodes and m edges takes $O(m \log n)$ time.

• You can use a Priority Queue Data Structure to maintain a set of n numbers, and insert and delete the maximum in $O(\log n)$ time per operation.