Scheduling Notation

We will give the typical notation used in the course
Jobs

- Number: \(n \)
- Typical Index: \(j \)
- Features:
 - processing time: \(p_j \) or \(p_{ij} \)
 - release date: \(r_j \)
 - deadline or due date: \(d_j \)
 - weight \(w_j \)
Machines

– Number: \(m \)
– Typical Index: \(i \)
– Possible Environments:
 * 1 : one machine
 * \(P, P_m \): parallel (identical machines)
 * \(Q, Q_m \): related machines (different speeds)
 * \(R, R_m \): unrelated machines (processing time depends on job and machine)
– Shop Environments
 * \(J \): job shop – each job has linear constraints among its task
 * \(F \): flow shop – each job has the same linear constraints among its task
 * \(O \): open shop – no constraints among tasks
Constraints

We give some examples here:

- r_j: release date
- pmtn: preemption
- prec: precedence constraints
- s_{jk}: sequence dependent set up times
- bkdwn: machines may breakdown
- block: limited buffer size
Objectives

– A schedule designates which job runs on which machine at each time. It therefore assigns a completion time C_j to each job j.
– We evaluate a job by some function of C_j and the other parameters of job, e.g.
 * Lateness: $L_j = C_j - d_j$
 * Tardiness: $T_j = \max\{L_j, 0\}$
 * Unit Cost: $U_j = 1$ if $C_j > d_j$ and 0 otherwise
 * Flow (Response) Time: $F_j = C_j - r_j$
 * Idle Time: $I_j = C_j - r_j - p_j$
 * Stretch: $S_j = (C_j - r_j)/p_j$
– We then evaluate a schedule by some function of the job functions, usually a minimization of a
 * sum
 * weighted sum
 * discounted weighted sum
 * maximum (We use X_{\max} as shorthand for $\max_j X_j$).
3 field notation

- machines — constraints — objective
- Default is no preemption

Examples:
- $P||C_{\text{max}}$ - parallel identical machines, minimize the schedule length (makespan)
- $1|\text{prec, pmtn}|\Sigma w_j C_j$ - one machine, precedence constraints and preemption, minimize the sum of weighted completion times
- $P\infty|\text{prec}|C_{\text{max}}$ - project scheduling
- $Jm|\text{nowait}|C_{\text{max}}$ - nowait job shop scheduling, minimize makespan
- $1|\text{pmtn}|\Sigma w_j T_j$ - one machine, preemption, minimum weighted tardiness