NP-complete Partitioning Problems

Subset Sum: Given a list of t positive integers $S = \{x_1, x_2, \dots, x_t\}$ and an integer B, is there a subset $S' \subseteq S$ s.t. $\sum_{x_i \in S'} x_i = B$.

- Yes instance: $S = \{1, 2, 5, 7, 8, 10, 11\}, B = 22$.
- No instance: $S = \{4, 10, 11, 12, 15\}, B = 28$.

3-Partition Given a list of 3t positive integers $S = \{x_1, x_2, \ldots, x_{3t}\}$ with $\sum_{x_i \in S} x_i = tB$, and each x_i satisfying $B/4 < x_i < B/2$, can you partition S into t groups of size 3, such that each group sums to exactly B.

- Yes instance: $S = \{26, 26, 27, 28, 29, 29, 31, 33, 39, 40, 45, 47\}$
- No instance: $S = \{26, 26, 27, 28, 29, 29, 31, 33, 38, 40, 45, 48\}$ (I think)

$P||C_{\max}|$

Problem: Given n jobs with processing times p_j , schedule them on m machines so as to minimize the makespan.

Decision version: Given n jobs with processing times p_j and a number D, can you schedule them on m machines so as to complete by time D.

Sample inputs:

- Jobs are $\{1, 2, 5, 7, 8, 10, 11\}$, 2 machines, D = 22.
- Jobs are $S = \{4, 10, 11, 12, 15\}$, 3 machines D = 20.

Reduction: Subset sum reduces to $P||C_{\max}$.

Idea of reduction: Given a subset sum instance, create a 2-machine instance of $P||C_{\max}$, with $p_j = x_j$ and D = B. Now there is a feasible schedule iff there is a subset summing to B.

$1|r_j|L_{\max}$

Reduction: Reduce 3-partition to $1|r_j|L_{\text{max}}$.

3-Partition Given a list of 3t positive integers $S = \{x_1, x_2, \ldots, x_{3t}\}$ with $\sum_{x_i \in S} x_i = tB$, can you partition S into t groups of size 3, such that each group sums to exactly B.

Given a 3-partition instance, we will creat a $1|r_j|L_{\text{max}}$ instance in the following way:

Jobs: n = 4t - 1 jobs, t - 1 of which are dummy jobs

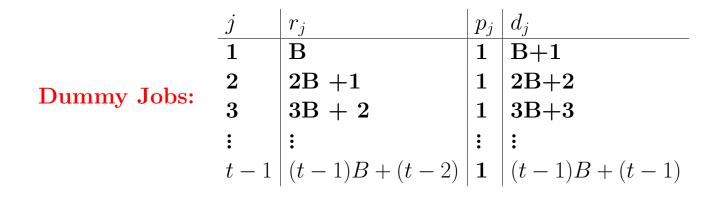
Dummy Jobs:	j	$\mid r_{j}$	p_{j}	$\mid d_{j}$
	1	В	1	B+1
	2	2B + 1	1	2B+2
	3	$3\mathrm{B}+2$	1	3B+3
	:	•	:	:
	t-1	(t-1)B + (t-2)	1	(t-1)B + (t-1)

Real Jobs:

- indexed t through 4t-1.
- All have $r_j = 0$

- All have $d_j = tb + (t-1)$
- $p_j = x_{j-(t-1)}$

Proof



Real Jobs:

- indexed t through 4t-1.
- All have $r_j = 0$
- All have $d_j = tb + (t 1)$
- $p_j = x_{j-(t-1)}$

Idea of Proof: Argue that there is a schedule with $L_{\text{max}} = 0$ iff the partition instance is yes.