
Uber:
Minimizing

ETA

Anna Juchnicki Sasha Sklyarenko
Christina Nguyen Faith Yu

Problem/Goal
● Dataset from uber contains times and

coordinates of incoming requests in
New York City

● We want to figure out how to
schedule these requests and assign
them to drivers

Formulation
Is it possible to formulate as a scheduling problem studied in class?

m

p
j

r
j

d
j

Assume we know number of cars at any certain moment

Time it takes to travel to pickup location

Expected release dates/times are calculated from historical data

Fake deadline of 5 minutes

Formulation
Objective: minimize sum of lateness of arrival to the pickup location

Matches a problem we studied in class:

Pm | rj , dj | ΣTj

Our Assumptions
● Only focus on rides within Manhattan (our data was in the lower half)
● One customer per ride (no Uber Pool)
● Vehicles move at a constant speed on a strict grid
● If a vehicle is not serving a customer, it will either:

○ Become idle

○ Drive towards the nearest predicted high-demand area

○ Drive around randomly (Uber found this is the least optimal)

● Average ride distance is 1 mile, average car speed is 10mph -> approximately 6
minutes per ride

○ This is assuming there is no traffic and the driver can get directly to the destination

○ Taking into account Manhattan traffic, an average trip is probably around 12 minutes

Vehicle Scheduling on a Tree to Minimize Maximum Lateness:
Karuno, Nagamochi, Ibaraki

● Goal: Routing schedule that minimizes the maximum lateness Lmax of a single
vehicle traveling on a tree-shaped network T

○ Each vertex v has due date d(v) and processing time p(v), travel time w(v, u) and w(u, v) associated

with each edge (u, v) ∊ set of edges E

○ Vehicle starts at initial vertex v0, visits all tasks v (w/o preemption) for their p(v) and returns to

the initial vertex

○ Each edge ends up being traversed exactly two times (u to v, v to u)

● Polynomial time algorithm w/ depth-first routing constraint

Uber’s Current Solution
In 2014, Uber did its own
simulation to match drivers with
riders and evaluated the
following strategies:

1. Stationary
2. Random Drive

3. Gravity

Uber’s Current Solution
In 2014, Uber did its own
simulation to match drivers with
riders and evaluated the
following strategies:

1. Stationary
2. Random Drive

3. Gravity

There are optimal dispatch distances
for pairing a driver with a rider, and
there are optimal behaviors for drivers
to take in between trips. When
dispatch distances are very short,
drivers should navigate back toward
demand density.

Our Algorithm
Since the problem is NP-hard, we formulate this as a matching problem and will
attempt to apply heuristics.

Using the insights from the 2014 Uber study, we chose to limit the problem to
minimizing tardiness when the driver and rider are at a distance of one mile within a
high density area.

1. Find the optimal number of drivers to
staff at each hour.

2. Determine high demand areas across
 Manhattan.

3. Formulate the scheduling problem as a
matching problem and solve.

● We looked at a particular instance of 15 customers and 10 drivers in a high
demand area

○ For each driver i, we calculated their tardiness for their arrival to customer j

○ Calculated by:

■ Generating a random number between 0 and 1 miles, for the distance between the

customer and driver

■ Multiplying estimated travel time by a traffic factor of 2

This is a greedy algorithm.

This is a greedy algorithm.

